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Exact Calculation of the Radiatively Induced Lorentz and CPT Violation in QED
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Radiative corrections arising from the axial coupling of charged fermions to a constant vectorbm

can induce a Lorentz- andCPT -violating Chern-Simons term in the QED action. We calculate
the exact one-loop correction to this term keeping the fullbm dependence, and show that in the
physically interesting cases it coincides with the lowest-order result. The effect of regularization and
renormalization and the implications of the result are briefly discussed.
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The possible breaking ofCPT and Lorentz invariance
due to nonconventional physics has been recently
dressed by constructing extensions of the standard mo
that include tiny noninvariant renormalizable terms (s
Refs. [1–5], and references therein; the possibility of d
namical Lorentz symmetry breaking has been conside
in Ref. [6]). In particular, it is interesting to conside
the QED sector of such extensions. We shall be co
cerned here with only the Lorentz-violatingCPT -odd
terms, which for a single charged (Dirac) fermion read

SCPT �
Z

d4x

∑
2amc̄gmc 2 bmc̄gmg5c

1
1
2

kmemnrsAnFrs

∏
. (1)

Stringent experimental bounds can be put on the pu
photon CPT -violating term [7], which is of the Chern-
Simons form [8] (a disputed claim exists, however, for
nonzero�k [9,10]). Moreover, this term introduces tachy
onic modes in the photon spectrum and, for a timelik
km, a vacuum instability [7,11]. Hence, both experime
and theory suggest thatkm should vanish (at least in
the timelike case). A natural question is then wheth
a nonzerokm can be induced by radiative correction
involving Lorentz andCPT -violating couplings in other
sectors of the total low-energy theory. In that case, t
tight bounds onkm would also constrain these sectors. I
the QED extension such corrections can arise only fro
the axial-vector term, with couplingbm.

Several authors have tried to answer this question.
calculations have been performed to one loop and
leading order inbm, and have rendered a finite resul
However, despite some early claims of definite values f
the inducedkm [3,12], it seems quite clear now that the
result is ambiguous [2,13–15], i.e., depends on the deta
of the high-energy theory [16]. It is our purpose her
to calculate the one-loop corrections to all orders in th
couplingbm and discuss the relevant issues in the light
the exact result. After this work had been completed, w
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learned that Chung had carried out the same calculat
(for b2 , m2), with the same result [17].

The relevant quantity is the parity-odd part of th
vacuum polarization, which must be of the form

P
mn
odd�p� � emnabbapbK�p, b, m� , (2)

wherepm is the external momentum and the functionK is
a scalar. The contribution to the induced Chern-Simo
term in the effective action is given by

�Dk�m � 2
1
2

bmK�0, b, m� , (3)

and must be a function ofb2�m2. To one-loop, the
only contributing diagram coincides with the standar
one-loop vacuum-polarization but with the usual fermio
propagator replaced by thebm-exact propagator

Sb�k� �
i

k� 2 m 2 b�g5
. (4)

We use a Hermitiang5 with tr�gmgngrgsg5� �
4iemnrs and gmn � diag�1, 21, 21, 21�. In order to
keep the full dependence onbm we must rationalize the
propagator. We find

Sb�k� � i
�k� 1 m 2 b�g5� �k2 2 m2 2 b2 1 �k�, b��g5�

�k2 2 m2 2 b2�2 1 4�k2b2 2 �k ? b�2�
,

(5)

which agrees with the expression given in Ref. [1
As discussed there, this propagator has four poles t
occur at real values ofk0 [18]. The one-loop vacuum
polarization reads

Pmn�p� �
Z d4k

�2p�4 tr�gmSb�k�gnSb�k 2 p�� . (6)

This integral is linearly divergent. Equation (5) allow
us to compute the trace in the numerator, which for t
odd terms inbm reduces toemnabpbFa�k, p, b, m�, with
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Fa�k, p, b, m� � baF�1�
a �k, p, b, m� 1 kaF�2�

a �k, p, b, m�

� 24i�ba�2m2�k2 2 m2 2 b2� 1 �k2 1 m2 1 b2� ����k 2 p�2 2 m2 1 b2��� 1 4k ? b�k 2 p� ? b�

2 2ka��k2 2 m2 1 b2� �k 2 p� ? b 1 ����k 2 p�2 2 m2 1 b2���k ? b�� . (7)
The linearly divergent term has disappeared, leaving an
integral which is just logarithmically divergent by power
counting. Since we are interested in only K�p, b, m� for
pm � 0 and, luckily, no term with emnabbakb appears,
we can simplify the calculation by setting pm � 0 in
Fa�k, p, b, m� and in the denominator of the integral.
We are then left with two integrals which depend on
only bm and m. The first one is already of the form
baK1�0, b, m�. The second integral must also give a
result of the form baK2�0, b, m�, and K2�0, b, m� can be
calculated multiplying the integral by ba and dividing by
b2 (as long as bm is not lightlike). In this way, we arrive
at the following expression:
K�0, b, m� � 24i
Z d4k

�2p�4

1
��k2 2 m2 2 b2�2 1 4���k2b2 2 �k ? b�2����2

3

Ω
�2m2�k2 2 m2 2 b2� 1 �k2 1 b2�2 1 4�k ? b�2 2 m4� 2

1
b2 �4�k ? b�2�k2 2 m2 1 b2��

æ
. (8)

In order to calculate this integral, we go to Euclidean space via a Wick rotation of k0 and then perform an analytic
continuation to bE � �ib0, �b�:

K�0, bE , m� � 24
Z d4kE

�2p�4

1

��k2
E 1 m2 2 b2

E�2 1 4���k2
Eb2

E 2 �kE ? bE�2����2

3

Ω
�2m2�k2

E 1 m2 2 b2
E� 2 �k2

E 1 b2
E�2 2 4�kE ? bE�2 1 m4� 1

1

b2
E

�4�kE ? bE�2�k2
E 1 m2 1 b2

E��
æ

.

(9)

Here the scalar product is Euclidean. One can directly see at this stage that the result must be finite. Indeed, for very
large jkEj the leading term in the integrand has the form

k2
E 2 4�kE ? bE�2�b2

E

k6
E

, (10)

which gives a vanishing result if the integral is done symmetrically. The other terms are power-counting finite. This
also shows an ambiguity in the induced term: the integral of the expression (10) is regularization dependent. In (four-
dimensional) spherical coordinates Eq. (9) reads

K�0, bE , m� � 2
1

p3

Z `

0
djkEj jkEj

3
Z p

0
du sin2u

1

��jkEj2 1 m2 2 b2
E�2 1 4jkEj2b2

E sin2u�2

3 ��2m2�jkEj
2 1 m2 2 b2

E� 2 �jkEj
2 1 b2

E�2 2 4jkEj
2b2

E cos2u 1 m4�

1 �4jkEj
2�jkEj

2 1 m2 1 b2
E� cos2u�� . (11)

Doing first the angular integral we find

K�0, bE , m� �
1

4p2b4
E

Z `

0
djkEj jkEj

Ω
�k2 1 m2� 2 sgn�jkEj

2 1 m2 2 b2
E�

3
�jkEj

2 1 m2�4 1 3b2
E�jkEj

2 1 m2�2�jkEj
2 1 b2

E 2 m2� 1 b6
E�jkEj

2 2 m2�
�4b2

EjkE j2 1 �jkEj2 1 m2 2 b2
E�2�3�2

æ
.

(12)
This integral is well behaved for large jkE j. Note the
appearance of the sign function. For m fi 0, the final
result is (going back to the Minkowskian bm)

�Dk�m �
3

16p2 bm, if 2 b2 # m2; (13)

�Dk�m �

√
3

16p2 2
1

4p2

s
1 2

m2

jb2j

!
bm,

if 2b2 . m2. (14)
For any timelike bm and for a spacelike bm with jb2j ,

m2, Eq. (13) is the relevant one. Surprisingly enough,
in these cases our calculation to all orders in bm gives
the same result as the one obtained in the bm-linear ap-
proximation of Ref. [15]. Obviously, perturbation theory
about bm � 0 does not detect the different behavior we
have found for 2b2 . m2. On the other hand, continuity
in b2 implies that the lightlike case, b2 � 0, is also given
2519
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by Eq. (13). In fact, dimensional analysis shows that the
bm-linear approximation is exact for vanishing b2. Note
also in passing that for the fine-tuned value b2 � 2

16
7 m2,

a vanishing �Dk�m is obtained.
If the fermion is massless, m � 0, we find �Dk�m �

2
1

16p2 bm for any kind of bm. In this simple case, there
are at least three other possible ways of calculating the
induced term, which give the same answer:

(1) A simpler bm-exact propagator can be obtained for
m � 0:

Sb�k� � i
�k� 1 b�g5� �k2 1 b2 2 2k ? bg5�

�k 1 b�2�k 2 b�2 . (15)

The calculation can then be simplified using Feynman
parameters and the result �Dk�m � 2 1

16p2 bm is found for
any bm.

(2) Perturbatively, one can perform just a bm-linear
calculation, since in the massless case the higher-order
terms vanish for dimensional reasons. From Eq. (14) in
Ref. [15], the same �Dk�m results. The only contribution
comes from the surface term in Eq. (10) of Jackiw-
Kostelecký’s calculation.

(3) A confirmation of the same result, nonperturbative
in bm and in the fine-structure constant, is provided in
Ref. [13] (following a suggestion by D. Colladay): an
anomalous chiral redefinition of the fermion fields allows
one to get rid of the coupling to bm, so that the contribution
(to all orders) to K�0, b, 0� comes from the corresponding
Fujikawa Jacobian. Up to the unavoidable ambiguity
(which in this method comes from the definition of the
current operator), 2

1
16p2 bm is obtained again.

An infrared regularization can spoil this result. For
instance, giving the fermion a small mass obviously shifts
it back to 3

16p2 bm in the timelike-bm case. At any rate
this is just a formal discussion, since there are no massless
electromagnetically charged fermions in nature.

We have also calculated the integral in Eq. (8) directly
in Minkowski space, using first the residues method
to perform the integration on k0, and integrating on �k
afterwards. Although the result differs by a constant,
because k0 and �k are not treated symmetrically, the same
dependence on b2 and m2 is found.

It is rather striking that the contributions to �Dk�m of
diagrams with more than one insertion of b�g5 vanish. We
have explicitly checked that this is indeed the case at or-
der bmb2. At this and higher orders, all integrals are finite
by power counting, and hence unambigous. Coleman has
observed that the vanishing of these higher-order contri-
butions can be explained by his argument with Glashow
in Ref. [3], which can be applied to finite diagrams with
insertions of b�g5 [19]. Consider a two-photon amplitude
with n . 1 insertions of b�g5. The idea is to let each
of the two photons carry different momenta, p and q
(the insertions carry nonzero momentum then). Gauge
invariance implies transversality in each of the photons.
Differentiating each of the transversality conditions with
2520
respect to the corresponding momentum, one learns that
the amplitude is O�pq�. It follows that when ones goes
to equal momenta, q � p, the amplitude is O�p2�. Since
the Chern-Simons term in the effective action is O�p�,
one concludes that this amplitude does not contribute to
�Dk�m. In Ref. [3], this argument is proved to be valid to
any order in the fine-structure constant. Note, however,
that it does not apply to diagrams with just one insertion,
due to the presence of triangular anomalies [15].

Let us discuss now how regularization and renormal-
ization affect the result. This is an important point be-
cause the complete SQED 1 SCPT theory is not finite and
requires renormalization (and, furthermore, renormaliza-
tion is also relevant in a finite theory [20,21]). The
exact decomposition Sb�k� � S�k� 2 iSb�k�b�g5S�k� per-
formed in Ref. [15], shows that the ambiguities can come
from only the lowest-order piece, the rest being finite
by power counting. In our calculation, the result can
be changed by any regularization that destroys either the
spherical symmetry (in four-dimensional Euclidean space)
of the high-energy behavior or the steps we followed to
arrive at Eq. (9). In general, different regularizations (or
subtractions) will render different results, even if they pre-
serve gauge invariance. This is apparent in differential
renormalization, which makes the ambiguity explicit [14].
As a matter of fact, independently of how one regulates and
subtracts the divergent integrals, one always has the free-
dom to add any (renormalizable) finite counterterm that
is allowed by the relevant symmetries of the theory [22].
This is also true when the radiative corrections to that term
are finite [21]. In the present case, this means that the in-
duced �Dk�m can have any value, for it is not protected by
any symmetry [15] (except CPT and Lorentz invariance,
but we just broke them). The conclusion of our study is the
following: if the regulator and the subtraction rule are mass
independent, a mass-independent result will be obtained to
all orders in bm in the physically relevant cases, as the
CPT - and Lorentz-violating terms coefficients are much
smaller than the mass of any electromagnetically charged
fermion and Eq. (13) provides the induced term in this
situation.

In Ref. [2] an interesting discussion was made regard-
ing the possible vanishing of the induced Chern-Simons
term due to an anomaly-cancellation mechanism in the
high-energy theory (of course, we consider now several
fermion species). Essentially, the argument goes as fol-
lows: From the point of view of a more fundamental
theory, the diagrams with one b�g5 insertion (at one loop)
can be viewed as the corresponding triangular diagrams
with the same photon legs and a third leg involving a
coupling to an axial vector, in the limit in which there
is zero momentum transfer to the axial-vector leg and
the latter is replaced with a vacuum expectation value.
The condition for the cancellation of the anomalies oc-
curring in these diagrams then implies that the induced
term also cancels. This argument requires that the term
induced by different fermions be the same. This is true if
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the induced term contains no mass dependence and, be-
sides, a universal and mass-independent renormalization
prescription is adopted for all the contributing diagrams
(such a prescription can be justified again by a similar
argument). Our result shows that the first requirement,
which is trivial at the bm-linear order, holds to all orders
in bm. Invoking the Adler-Bardeen theorem, the argument
for the vanishing of the induced term was also generalized
in Ref. [2] to higher loops. Again, this is valid only if
no mass dependence is introduced by higher-order correc-
tions. That this is the case follows from the combination
of Coleman-Glashow’s argument and Adler-Bardeen the-
orem. To summarize, in the context of Ref. [2], the can-
cellation of anomalies in the fundamental theory imply the
vanishing of the induced term to any order in bm and in
the fine-structure constant, if a mass-independent scheme
is used.

We have until now neglected the possible influence of
the am term in Eq. (1) but, in principle, corrections of
order a2bm and higher could appear. Actually, one can
include the effect of am to all orders by considering the
corresponding am- and bm-exact propagator. This propa-
gator is just the one in Eq. (5) but with km substituted by
km 2 am. The vector am behaves then like an external
momentum which appears in all the propagators of the
loop. Since there are no derivative couplings, a shift
in the loop momentum km ! km 1 am can completely
eliminate am, so the result is not affected. This shift is
also subjected to regularization ambiguities. As a matter
of fact, the term proportional to am can be eliminated from
the action SQED 1 SCPT by a field redefinition of the
form c � exp�2ia ? x�x [1]. The effect of other sectors
(like the CPT -even Lorentz-violating extension of QED
considered in Ref. [2]) can also be studied with these
techniques, i.e., incorporating the corresponding fermion
bilinears into the exact propagator. This is beyond the
scope of the present work.

Let us finally stress that even if the radiative corrections
to the Chern-Simons term cancel for some reason, it
is still possible to add a finite counterterm and get a
nonzero �Dk�m. This is a sign of the fact that we have
no right to put km � 0 at tree level, unless there is some
symmetry in the high-energy theory that imposes this
value. Of course, it is comparison with experiment that
tells us to set km 1 �Dk�m � 0 but, in the absence of a
proper symmetry, we are facing a problem of naturalness.
Nevertheless, the anomaly-cancellation argument shows
that this problem does not come from other sectors of the
low-energy theory, and, from a practical point of view,
allows one to put km � 0 in the tree-level action, as long
as a consistent mass-independent scheme is used in the
calculations.
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