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Three Dimensional Quantum Delay Time Tomography
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Quantum delay time tomography data obtained from the intensity of a Gaussian wave packet are
to approximately construct the 3D scattering potential of the time dependent Schrödinger’s equati
a least action tomography algorithm which decouples into multiple 2D x-ray tomography algorit
when the mean energy of the wave packet is sufficiently high. We obtain two “miracle” identities
the characterization of admissible quantum delay time tomography data. The first is related to New
miracle identity. The second is a new curved miracle identity.

PACS numbers: 03.65.Db
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The main goal of 3D inverse quantum scattering is
determine the 3D scattering potential from scattering da
The usual scattering data have been the magnitude
phase of the scattering amplitude [1–8]. Whereas t
magnitude of the scattering amplitude (the square root
the differential cross section) can be measured, the ph
of the scattering amplitude cannot be measured. Newt
[4] suggests to solve the phase problem prior to solvin
the 3D inverse quantum scattering problem, i.e., to det
mine the phase of the scattering amplitude from the me
sured differential cross section by solving numerically a
integral equation [2] whose uniqueness and numerical s
lution have not been established yet. We formulate the 3
inverse quantum scattering problem with different scatte
ing data, where the phase of the quantum wave functi
is not used. We use quantum delay time tomography d
corresponding to the time of advance of the maximum
the intensity (not the phase) of a quantum Gaussian wa
packet. Our formulation is based on the time depende
Schrödinger’s equation, in contrast to the exclusive use
the time independent Schrödinger’s equation in previo
3D inverse quantum scattering studies [1–8]. We obta
two different “miracle” identities for the characterization
of admissible quantum delay time tomography data. T
first is related to Newton’s miracle identity of 3D inverse
quantum scattering [4,6,9]. The second is a new curv
miracle identity.

We first derive an approximate 3D quantum Gaussia
wave packet in the space time domain whose probab
ity density has the correct classical limit. Then we sho
how to approximately construct the 3D scattering pote
tial within a bounded volume from quantum delay tim
tomography data on the surface that bounds this volum
We show that when the mean energy of the quantu
Gaussian wave packet is sufficiently high, the 3D sca
tering potential can be rapidly constructed by multiple ap
plications of the 2D x-ray tomography algorithm.

The 3D quantum wave functionC�t, �r� for a particle
of mass m and chargeq in the presence of general
3D electrostatic field is governed by the time depende
Schrödinger’s equation
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2
h̄
i

≠

≠t
C � 2

h̄2

2m
=2C 1 qfC , (1)

wheref � f��r� is the electrostatic potential,�r is a po-
sition vector in 3D,t is time, =2 is the 3D Laplacian,
i2 � 21, andh̄ � h�2p is Planck’s constant. This equa
tion also holds for any other conservative field of forc
if qf��r� � V ��r� is its corresponding potential. Born
showed that the intensityjC�t, �r�j2 is a measurable quan
tum attribute and it corresponds to the relative probab
ity density of finding the particle at position�r at time
t. Our goal is to find a simple approximate relation
ship betweenjC�t, �r�j2 on the surface of a bounded vol
ume andf��r� within this volume. This is discussed
next. The timet can be transformed to the energyE
by Fourier transform and the wave functionC�t, �r� trans-
forms to Ĉ�E, �r� which satisfies�=2 1 P2�h̄2�Ĉ � 0,
whereP � �2m�E 2 qf��1�2. We use a modified semi-
classical approximation̂C � C exp�iU�h̄�, where U �
U�E, �A, �r� �

R�r
�A P ds satisfies the Hamilton-Jacobi equa

tion =U ? =U � P2, �A is a reference position vector,ds
is a differential arc length along the least action trajecto
and C is a Gaussian function of energy. This approx
mation is adequate provided that the de Broglie’s wav
length l � h�P does not change appreciably over i
de Broglie’s wavelength or equivalentlyj=lj ø 2p,
which we assume to hold till the end of this Letter. W
next transform our approximation back to the time doma
using inverse Fourier transform; this results in

C�t, �r� �
1

p
2p h̄

3
Z `

2`

e2�1�2� ��E2E0��d�2pp
p d

eiU�E, �A,�r�� h̄2iEt� h̄ dE ,

(2)

where E0 and d are positive constants. This particula
scaling of the Gaussian function was chosen so t
jĈ�E, �r�j2 is a proper probability density function for any
fixed position�r. The mean energy of this Gaussian isE0
whose uncertainty isd2�2. This choice of the Gaussian
will further result in a minimum uncertainty wave packe
© 1999 The American Physical Society
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with the correct classical limit. A quantum wave packet
is “almost monoenergetic” so that we choose d ø E0,
and the major contribution to the integral in (2) comes
from those E values in the vicinity of E0. Consequently
we approximate U�E, �A, �r� by the first two terms of
its Taylor’s expansion about E0 and then we evaluate
the resulting standard integral exactly. This results in a
3D quantum Gaussian wave packet whose intensity or
equivalently its probability density is given by

jC�t, �r�j2 � �
p

p h̄�d�21 exp

∑
2

µ
t 2 U 0�E0, �A, �r�

h̄�d

∂2∏
,

(3)

where the prime denotes the derivative with respect to
energy. In the classical limit we set h̄ to zero and then
we set d to zero (the order is important); this results
in the classical probability density function jCc�t, �r�j2 �
d�t 2 U 0�E0, �A, �r�� where d�?� is the Dirac delta function
and the subscript c denotes classical limit. Note that
U 0�E0, �A, �r� is deterministically the time of advance of the
maximum of the intensity (3), statistically it is the mean
time whose uncertainty is h̄2��2d2� and classically it is the
mean time whose uncertainty is zero, i.e., total certainty.
We next show that U 0�E0, �A, �r� corresponds to the time of
flight of a classical particle. The solution of the Hamilton-
Jacobi equation is given by U�E0, �A, �r�. Consequently

U 0�E0, �A, �B� �
Z �B

�A

m dsp
2m���E0 2 qf��r����

(4)

which also equals to
R �B

�A y21 ds, where y is the classi-
cal particle velocity. We have thus demonstrated that
U 0�E0, �A, �B� is the time taken by a classical particle of
mass m and charge q and energy E0 to move from �A to
�B in the presence of the general 3D electrostatic potential
f��r� along the least action trajectory. So, the correspon-
dence principle and the uncertainty principle are both sat-
isfied by our approximation (3).

Equation (4) and the Hamilton-Jacobi equation are the
required relationships between the quantum delay time
U 0�E0, �A, �B� and the potential f��r�. In the forward prob-
lem, when the potential is known and the quantum de-
lay time is sought, we first find the least action trajectory
and then we use (4) to determine the quantum delay time.
This relationship between the quantum delay time and the
potential is nonlinear. In the inverse problem, the quan-
tum delay time is measured at many �A and �B positions on
the surface G of a bounded volume D for a single mean
energy or many mean energies, and the potential within
this volume is sought such that (4) is satisfied. This is
a nonlinear integral equation in geometrical mechanics
similar to the corresponding nonlinear integral equation
of first arrival time tomography in geometrical optics [10].
We note that the resolution of our method is zero in clas-
sically inaccessible regions similar to the white holes [11]
of first arrival time tomography. The size of these white
holes can be shown to decrease as the mean energy E0
of the Gaussian wave packet increases. In the limit of
very high mean energy, i.e., E0 ¿ jqfj, our nonlinear
3D quantum delay time tomography problem simplifies to
multiple 2D x-ray tomography problems. In this limit (4)
simplifies to

U 0�E0, �A, �B� �
mj �B 2 �Aj
p

2mE0
1

mq
2E0

p
2mE0

Z �B

�A
f ds ,

(5)

where ds is a differential arc length along the straight line
joining �A and �B. The first term in (5) is the time needed
by a free particle to move from �A to �B. The second term
in (5) is proportional to the projection of the 3D potential
f onto the straight line joining �A and �B. If �A and �B
are located on the boundary of a circle j�rj � a, where
a is its radius, then from many such �A and �B positions
we can obtain by (5) most of the fan beam projections
of f��r� for �r on the plane of this circle. Using the fast
convolution algorithm of 2D x-ray tomography [12], we
can recover approximately f��r� on this slice and similarly
for all other slices. One can numerically produce these
2D slices from the fan beam projections or from the
parallel beam projections. The latter will require to first
transform all the fan beam projections to the parallel beam
projections or alternatively, the parallel beam projections
can be obtained directly from a plane quantum Gaussian
wave packet.

Our formulation of the 3D inverse quantum scattering
problem using the time dependent Schrödinger’s equation
yielded two practical inverse scattering algorithms for the
approximate construction of the 3D potential from quan-
tum delay time tomography data, obtained from the in-
tensity of a wave packet without using its phase. The
first algorithm is similar to the first arrival time tomogra-
phy within the geometrical optics approximation where
the least action trajectories are curved as are the geo-
metrical optics rays. The second algorithm is similar to
computerized x-ray tomography where the least action
trajectories are approximately straight lines for sufficiently
high energy as are x rays. Our first algorithm could have
been “sensed” from Hamilton’s [13] relationship between
the classical particle trajectory in a conservative field of
force and the geometrical optics ray in inhomogeneous
and isotropic medium, which played a major role in the
development of quantum mechanics and the electron mi-
croscope. Alternatively, if one applies the “optical think-
ing” of Born and Wolf [14] to the 3D quantum scattering
problem, then our first algorithm is “obvious” as soon as
one establishes that the quantum delay time is “equiva-
lent” to the first arrival time of classical waves within the
short wavelength approximation. My initial difficulty in
using this concept was that the group velocity and the
phase velocity of the classical wave are identical whereas
2495
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for quantum waves they are different (the “group veloc-
ity” of the quantum wave has nothing to do with the struc-
ture called “quantum groups” which are obtained from
groups such as SO�N�, SU�N�, SP�N�, G�2, A�2, and
F�2). A simpler algorithm results from quantum phase
delay tomography data, but the phase of a quantum wave
is an unmeasurable quantum attribute (our second algo-
rithm could have been predicted from [15]). In [15]
the 3D inverse Radon transform is used to solve the in-
verse scattering problem for the 3D plasma wave equation
which in the absence of bound states can be also used for
the 3D inverse quantum scattering problem [16] provided
that the phase of the quantum scattered waves can be com-
puted by solving an integral equation [2]. We can ap-
proximately construct the phase of our quantum Gaussian
wave packet from its intensity if needed for other appli-
cations. The phase of our wave packet is a�h̄, where
a is the time integral of the classical Lagrangian along
the least action trajectory for the “corresponding” particle
as the phase used by Feynman [17] in computing the
probability density using his version of quantum mechan-
ics. From the constructed potential (from the intensity of
the wave packet) we can compute the least action trajec-
tory and then we can compute the phase of the quantum
Gaussian wave packet. We should emphasize however
that in the presence of classically inaccessible regions, the
uniqueness of the potential distribution obtained by our
first algorithm is questionable as the quantum delay time
tomography data cannot “ feel” that part of the potential
within the geometrical mechanics white hole [11]. As
the mean energy of the quantum wave packet increases
these “ambiguous” regions shrink but not entirely in re-
gions where the repulsive potential is singular. Thus, the
resolution of the constructed potential by both of our al-
gorithms is expected to be poor or zero in such regions.
Furthermore, it is not expected that our algorithms will
be able to construct microscopic details of the potential
distribution when the measurements are taken at macro-
scopic distances in the presence of “noise.” This is also
the characteristic of the solutions given in [15] and [16]
using phase information in addition to intensity informa-
tion. In our second algorithm the 3D inverse quantum
scattering problem is decoupled into multiple 2D x-ray to-
mography problems which can be solved numerically on a
standard work station. This will be discussed elsewhere.

In [4] and [6] the phase and magnitude of the scattering
amplitude are input data for the 3D Newton-Marchenko
integral equation whose solution is h�t, û, �r�, where û

is a unit vector corresponding to the direction of the
plane wave incidence and t is the time variable of a
corresponding plasma wave equation. The potential V ��r�
is obtained from h by 22û ? =h�01, û, �r� � V ��r�. This
is called a miracle [4,6,9], because the left-hand side is
a function of five variables whereas the right-hand side
is a function of only three variables. Physically this
means that the potential is independent of the direction
2496
of the incoming plane wave. This miracle identity is
used by Newton for the characterization of admissible
quantum scattering data, which is another goal of inverse
scattering. We have two similar miracle identities for the
characterization of quantum delay time tomography data.
Our first miracle identity is obtained as follows: First
we construct the potential using multiple applications of
the 2D x-ray tomography algorithm [12] to the quantum
delay time tomography data obtained from sufficiently
high mean energy. Using (5) we can compute the quantum
delay time interior to the surface where the measurements
were taken. If we define û � ��r 2 �A��j�r 2 �Aj and

lim
E0!`

∑
U 0�E0, �A, �r� 2

mj�r 2 �Aj
p

2mE0

∏ µ
2E0

p
2mE0

mq

∂

� jH� �A, �r� , (6)

then our first miracle identity is

û ? =jH � �A, �r� � f��r� , (7)

where the left-hand side is a function of five variables and
the right-hand side is a function of only three variables.
Physically this means that the potential is independent
of the reference position vector �A or equivalently the
potential is independent of the direction û. Our second
miracle identity is obtained as follows: We construct
the potential by numerically solving the nonlinear integral
equation (4) using methods related to first arrival time
tomography for classical waves within the geometrical
optics approximation [10]. Then we insert this potential
into (4) and we can compute the quantum delay time
inside the volume that is interior to the surface where
the measurements were taken. This produces our second
miracle identity

E0

q
2

1
2q
m �ŝ ? =U 0�E0, �A, �r��2

� f��r� , (8)

where the left-hand side is a function of six variables, and
the right-hand side is a function of only three variables.
Physically the potential is independent of energy and also
independent of the reference position vector or alterna-
tively, the potential at any given position is independent
of the particular curved least action trajectory that crosses
this position. This is a curved miracle identity because
the least action trajectories are curved in contrast to our
first miracle identity and Newton’s miracle identity which
are both straight miracle identities because they correspond
to straight line trajectories. Both of our miracle identities
can be verified numerically and will be discussed further
elsewhere.
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