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Test of the State Reduction Rule
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We present an experiment for testing quantum state reduction. The state reduction rule is tested usin
optical homodyne tomography by directly measuring the fidelity between the theoretically expected
reduced state and the experimental state.
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In quantum mechanics state reduction (SR) is still a ve
discussed rule. The so–called “projection postulate” w
introduced by von Neumann [1] to explain the results fro
the Compton-Simons experiment, and it was generaliz
by Lüders [2] for measurements of observables with d
generate spectrum. The consistency of the derivation
the SR rule and its validity for generic measurements ha
been analyzed with some criticism [3]. In a very gener
context, the SR rule was derived in a physically consi
tent way from the Schrödinger equation for the composi
system of object and measuring apparatus [4]. An expe
ment for testing quantum SR is therefore a very interesti
matter. Such a test in general isnot equivalent to a test of
the repeatability hypothesis since the latter holds only f
measurements of observables that are described by s
adjoint operators. For example, joint measurements li
the Arthurs-Kelly one [5] are not repeatable, as the reduc
states are coherent states, which are not orthogonal.

Quantum optics offers a possibility of testing the SR
because several observables can be chosen to perform
ferent measurements on a fixed system. For instance,
can decide to perform either homodyne or heterodyn
or photon-number detection. To our knowledge this
a unique opportunity; in contrast, in particle physics th
measurements are mostly quasiclassical and restricted
only a few observables. In addition, optical homodyn
tomography (OHT), which is a powerful tool for measur
ing the density operator of the radiation field, has bee
developed in recent years [6] and it allows a precise d
termination of the quantum system after the SR.

A scheme for testing the SR could be based o
tomographic measurements of the radiation density mat
after nondemolition measurements. However, such
scheme would reduce the number of observables that
available for the test. Instead, one can take advanta
of the correlations between the twin beams produced
a nondegenerate optical parametric amplifier (NOPA),
which case one can test the SR even for demolitive-ty
measurements. Indeed, if a measurement is performed
one of the twin beams, the SR can be tested by homody
tomography on the other beam.

Our scheme for the SR test is given in Fig. 1 (for th
experimental setup, see the end of the paper). Differe
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kinds of measurements can be performed on beam
in this paper we show in detail the SR for heterodyn
detection as well as photon-number detection, but a
other kind of detection (such as homodyne or pha
detection by heterodyne) could be considered.

The radiation state of the twin beams produced by
NOPA with vacuum input (i.e., spontaneous parametr
down–conversion) can be written as

jj� � V �k� j0� j0�

� �1 2 jjj2�1�2
X̀
n�0

jnjn� jn� , (1)

whereV �k� � exp�k�ây
1 â

y
2 2 â1â2�� (for realk) describes

the action of the parametric amplifier having a gain pa
rameterj � tanh�k�. The subscripts1 and 2 refer to
operators of beams 1 and 2 witĥay and â being the
creation and annihilation operators of the field mod
respectively.

Before calculating the SR, we briefly recall the conce
of probability operator-valued measure (POVM). For

FIG. 1. Schematic of the proposed scheme for testing the S
for heterodyne detection. A NOPA generates a pair of tw
beams (1 and 2). After heterodyning beam 1, the reduced st
of beam 2 is analyzed by OHT, which is conditioned by th
heterodyne outcome. In place of the heterodyne detector o
can put any other kind of detector for testing the SR on differe
observables. In this paper we also consider the case of dir
photodetection.
© 1999 The American Physical Society
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system described by a density operator r̂, the probability
p�l�dl that the outcome of a quantum measurement of
an observable is in the interval �l, l 1 dl� is given
by Born’ s rule p�l�dl � Tr�r̂P̂ldl�, where P̂ldl is
the POVM pertaining to the measurement (such that
P̂l $ 0 and

R
dl P̂l � 1̂). For an exact measurement

of an observable, which is described by a self-adjoint
operator, P̂l is just the projector over the eigenvector
corresponding to the outcome l. In the case of the
photon number âyâ the spectrum is discrete and the
POVM is P̂m � jm� �mj for integer eigenvalue m. For
the Arthurs-Kelly joint measurement of the position and
momentum (corresponding to a joint measurement of the
two quadratures of the field) we have P̂a � p21ja� �aj,
where ja�, a [ C, is a coherent state, i.e., âja� � aja�.

Now let us analyze the SR for our scheme. When on
beam 1 we perform a measurement described by P̂l, the
reduced normalized state of beam 2 is

r̂�l� �
Tr1�jj� �jj �P̂l ≠ 1̂��

Tr1,2�jj� �jj �P̂l ≠ 1̂��
�

ĴP̂�
lĴy

p�l�
, (2)

where Ĵ � �1 2 jjj2�1�2jâyâ, and p�l� � Tr1,2�ĴP̂�
lĴy�

is the probability density of the measurement outcome
l. In the limit of infinite gain (j ! 1) r̂�l� ~ P̂�

l; for
example, for heterodyne detection with outcome a, we
have r̂�a� � ja�� �a�j.

If the readout detector on beam 1 has quantum efficiency
hr , then according to the SR rule the state in beam 2 is

r̂hr �l� �
Ĵ�P̂hr

l ��Ĵy

phr �l�
, (3)

where phr �l� � Tr1,2�Ĵ�P̂hr

l ��Ĵy�, and P̂
hr

l is the POVM
for measurement with a nonunit quantum efficiency. For
heterodyne detection one has [7]

P̂hr
a �

1
p

Z d2z
pD2

hr

e
2 jz2aj2

D
2
r jz� �zj , (4)

where D2
hr

� �1 2 hr ��hr , and hr is the overall quantum
efficiency of the heterodyne detector. For direct photode-
tection the ideal POVM P̂m � jm� �mj is modified to [7]

P̂hr
m �

X̀
j�m

µ
j
m

∂
hm

r �1 2 hr �j2mj j� � jj . (5)

The experimental test proposed in this paper con-
sists of performing conditional homodyne tomography on
beam 2, given the outcome l of the measurement on
beam 1. Actually, through homodyne tomography we can
directly measure the “fi delity of the test”

F�l� � Tr�r̂hr �l�r̂meas�l�� , (6)

where r̂hr �l� is the theoretically expected state in Eq. (3),
and r̂meas�l� is the experimentally measured state of
beam 2. Notice that in Eq. (6) we use the term fidelity
even if F�l� is a proper fidelity when at least one of
the two states is pure, which occurs in the limit of unit
quantum efficiency hr . In the following we evaluate the
theoretical value of the fidelity F�l� and compare it with
the simulation of the tomographically measured value.

The fidelity (6) can be directly measured by OHT with
use of the kernel function for the operator r̂hr �l�, as it
can be done for the expectation value of any (generally
complex) operator of the field mode [8]. In fact, for
a generic operator Ô, the expectation value �Ô� can be
measured by averaging the kernel function Rhh �Ô� �x, f�
over the homodyne data, namely,

�Ô� �
Z p

0

df

p

Z 1`

2`
dx phh �x, f�Rhh�Ô� �x, f� , (7)

where hh is the overall quantum efficiency of the homo-
dyne detector, and phh �x, f� is the probability distribution
of the quadrature x̂f � �ayeif 1 ae2if��2 at phase f

relative to the local oscillator (LO). In Ref. [8] the ker-
nel function for a generic operator Ô is derived, with the
following result:

Rhh �Ô� �x, f� �
Z 1`

0
dk ke

12hh
8hh

k2

3 Tr�Ô cos�k�x 2 x̂f��	 . (8)

Hence, F�l� is obtained from an average of the form

F�l� �
Z p

0

df

p

Z 1`

2`
dx phh �x, f; l�

3 Rhh �r̂hr �l�� �x, f� , (9)

where phh �x, f; l� is the conditional homodyne probabil-
ity distribution for outcome l at the readout detector.

For heterodyne detection of beam 1 with outcome a [
�, the reduced state of beam 2 according to the SR rule is
given by the displaced thermal state

r̂hr �a� � hjD̂�g� �1 2 hj�âyâD̂y�g� , (10)

where

hj � 1 1 �hr 2 1� jjj2, g �
jhr

hj

a�, (11)

and D̂�g� � exp�gây 2 g�â� is the usual displacement
operator. The kernel function for measuring F�a� is
easily calculated from Eqs. (8)–(11). One has

Rhh �r̂hr �a�� �x, f� �
2hhhj

2hh 2 hj

3 F

√
1,

1
2

; 2
2hhhj

2hh 2 hj

3 �x 2 gf�2

!
, (12)

where gf � Re�ge2if�, and F�a, b; z� denotes the cus-
tomary confluent hypergeometric function of argument z.
The kernel in Eq. (12) is bounded for hh .

1
2hj , i.e.,

for the fidelity measurement, one needs to satisfy the
2491
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following bound on the quantum efficiencies:

hh .
1
2

�1 1 jjj2�hr 2 1�� . (13)

As one can see from Eq. (13), for hh . 0.5 the fidelity
can be measured for any value of hr and any gain
parameter j of the NOPA. We recall that the condition
hh . 0.5 is required for the measurement of the density
matrix of a radiation state [9]. However, in a direct
measurement of the fidelity the measurement of the
density matrix is bypassed and we see from Eq. (13) that
the bound hh � 0.5 can be lowered.

The tomographically measured fidelity F�a� in Eq. (9)
with r̂hr �a� as given in Eq. (10) must be compared with
2492
the theoretical value

Fth�a� � hj��2 2 hj� . (14)

Notice that Fth�a� does not depend on a: therefore in the
following it will be simply denoted by Fth.

Now we analyze the SR for direct photodetection of
beam 1. For an outcome n at the readout photodetector,
the reduced state of beam 2 is given by

r̂hr �n� � hj

√
hj

1 2 hj

!n√
âyâ
n

!
�1 2 hj�âyâ. (15)

The pattern function for the corresponding fidelity mea-
surement is
Rhh �r̂hr �n�� �x, f� �
�hj≠z�n

n!

É
z�0

2hhhj

2hh 2 hj 1 z
F

√
1,

1
2

; 2
2hh�hj 2 z�

2hh 2 hj 1 z
x2

!
. (16)
We see that the same bound, Eq. (13), on the quantum
efficiencies holds true also for direct photodetection. In
this case, the tomographically measured fidelity F�n�
must be compared with the following theoretical value:

Fth�n� � h
212n
j F���2n 1 1, 2n 1 1; 1; �1 2 hj�2��� , (17)

where F�a, b; c; z� denotes the customary hypergeometric
function of argument z.

In Fig. 2 we report results of the tomographically mea-
sured fidelity for heterodyne detection on beam 1. The
numerical results are obtained by simulating the quadra-
ture probability distribution pertaining to the reduced state
(10), and averaging the kernel functions in Eq. (12). The
simulation is performed according to the SR hypothesis;
thus the homodyne probability distribution in Eq. (9) cor-
responds to state (10). Notice that for heterodyne detection

FIG. 2. (a) Fidelity ratio F�Fth (see text) for heterodyne
detection with quantum efficiency hr � 0.8, 0.5, 0.3, and 0.1
(squares, circles, triangles, and stars, respectively). The open
(solid) points are for n � 1 (n � 100) thermal photons per
beam. The number of data used in each case is 2080 (4 blocks
of 20 data samples for 26 settings of the phase f). (b) Fidelity
ratio from the same simulated homodyne data of (a), but for
F with a reduced state with opposite amplitude (a ! 2a) in
Eq. (11).
the measurement spectrum is continuous and the probabil-
ity phr �a�da of outcome a is infinitesimal. Therefore,
we present the average value F of the fidelity F�a� over
phr �a�. Results for various values of the quantum effi-
ciencies hr and hh are reported along with two different
values of the NOPA gain parameter j [given in terms of
the number of thermal photons per beam n � jjj2��1 2

jjj2�]. For comparison in the same figure we also re-
port the fidelity ratio as obtained from the same simulated
homodyne data, but for mismatched state reconstruction
corresponding to the experimental fidelity with a reduced
state with opposite amplitude a ! 2a in Eq. (11). One
can clearly see that a decisive test can be performed with
samples of a few thousand measurements only. The er-
ror in the measurement, denoted by the vertical error bars,
is rather insensitive to both quantum efficiencies and the
NOPA gain in the considered range of values. Notice,
however, that the disagreement for the mismatched fidelity
increases for improved quantum efficiency at the hetero-
dyne hr and for larger gain at the NOPA.

In Fig. 3 the tomographically measured fidelity is re-
ported when direct photodetection is performed on beam 1.
Here the simulation is achieved analogously to the previous
case, but now using Eqs. (15) and (16). Results for vari-
ous outcomes n are given with different values of hh and
n. For comparison in the same figure we also report the fi-
delity ratio as obtained from the same simulated homodyne
data, but for a mismatched state reconstruction correspond-
ing to the experimental fidelity with the state from hetero-
dyne state reduction in Eq. (10) with a �

p
n. Again, the

test can be performed with samples of a few thousand mea-
surements only; the resulting error in the measurement is
rather insensitive to the values of the experimental parame-
ters. Notice that the disagreement for the mismatched fi-
delity increases for larger outcomes n, where the fact that
the fidelity is slightly improved for larger gain at the NOPA
is an artifact due to the analytical form of the state for
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FIG. 3. (a) Fidelity ratio F�n��Fth�n� (see text) for direct
detection with quantum efficiency hr � 0.3, resulting in out-
comes n � 0, 1, and 2 at the photodetector (squares, circles,
and triangles, respectively). The thermal photons per beam are
n � 10 (open points) and n � 100 (solid points). In each case
104 data are used and the error bars are obtained by divid-
ing the data into ten blocks. (b) Fidelity ratio from the same
simulated homodyne data of (a), but with the experimental fi-
delity with the state from heterodyne state reduction in Eq. (10)
with a �

p
n.

low efficiency hr . Analogous results would have been ob-
tained for the symmetrically mismatched case for Fig. 2.

In our lab the NOPA consists of a type-II phase-
matched KTP crystal that is pumped by the second
harmonic of a Q-switched and mode-locked Nd:YAG
laser. Previously, we have employed such a NOPA, with
parametric gains .10 (jjj2 . 0.9), to generate highly
quantum-correlated twin beams of light at 1064 nm [10].
By appropriately choosing the input quantum state, a simi-
lar setup was then used to demonstrate the production of
squeezed-vacuum state with a high degree (5.8 6 0.2 dB )
of squeezing [11]. In the present context, the twin beams,
which are easily separable because of their orthogonal po-
larizations resulting from type-II phase matching, can be
separately detected; beam 2 with a homodyne detector for
detecting the reduced quantum state and beam 1 with ei-
ther a heterodyne detector or a photon-counting detector.
We have recently reported preliminary results of double
homodyne measurements [12], which were performed to
reconstruct the joint photon-number density matrix of the
twin-beam state [13]. The main challenge in the present
experiment is the achievement of high degrees of overlap
(mode-matching efficiency) between the down-converted
and the LO modes. Such overlap is nontrivial in pulsed,
traveling-wave experiments owing to the distortion of the
down-converted modes that is caused by the spatiotempo-
rally Gaussian profile of the pump beam. With suitable
choice of LOs, however, we have previously obtained
hh . 0.70 [14], an adequate value for the present experi-
ment (cf. Figs. 2 and 3). In photon-counting measure-
ments on beam 1, the main challenge will be the selection
of the appropriate mode. Mode-selective photon count-
ing can be performed by passing beam 1 through an ap-
propriate filter before photodetection. In addition, new
high quantum-efficiency, solid-state photomultipliers have
become available that can distinguish between 0, 1, 2, . . .
photons in ns-duration pulses [15].

In conclusion, we have presented an experiment to test
the rule of state reduction upon quantum measurements.
Our goal is achieved by changing the kind of measure-
ment performed on one beam of a pair of twin beams.
The reduced state of the other beam, which depends on
the kind of measurement performed, is then experimen-
tally observed through a tomographic measurement of the
fidelity between the theoretically expected reduced state
and the experimental state. We decided to present the
test of SR in terms of the fidelity for illustrative purposes.
However, the same test can be performed by tomographic
reconstruction of the whole density matrix of the reduced
state, without any modification in the schematic of the
experiment.
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Naval Research and the PRA–CAT97 of the INFM.
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