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Maxwell Duality, Lorentz Invariance, and Topological Phase
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We discuss the Maxwell electromagnetic duality relations between the Aharonov-Bohm, Aharonov-
Casher, and He-McKellar-Wilkens topological phases, which allow a unified description of all three
phenomena. We also elucidate Lorentz transformations which allow these effects to be understood
in an intuitive fashion in the rest frame of the moving quantum particle. Finally, we propose two
experimental schemes for measuring the He-McKellar-Wilkens phase.

PACS numbers: 03.65.Bz, 11.30.Cp, 14.80.Hv, 32.60.+ i
In 1959 Aharonov and Bohm (AB) predicted that a
quantum charge, e � jej, circulating around a magnetic
flux line, would accumulate a quantum topological phase
[1], which can be detected using matter-wave interferome-
try. The flux tube can be thought of as a solenoid of infini-
tesimal cross-sectional area or as a linear array of point
magnetic dipoles [Fig. 1(a)]. The AB phase is wAB �
eFM�h̄c, where FM � 4p2m is the magnetic flux with m

the number of dipoles per unit length. The AB effect has
been confirmed by a series of electron interference experi-
ments, culminating in the demonstrations of Peshkin and
Tonomura [2]. In 1984, Aharonov and Casher (AC) pre-
dicted a reciprocal effect [3]. The AC phase accumulates
on a quantum magnetic dipole m as it circulates around,
and parallel to, a straight line of charge [Fig. 1(b)]. The
AC phase is given by wAC � 4pmlE�h̄c, where lE is
the electric charge per unit length. It has been observed
with a neutron interferometer [4] and in a neutral atomic
Ramsey interferometer [5].

He and McKellar in 1993, and Wilkens independently in
1994, predicted the existence of a third topological phase
[Fig. 1(d)] that is essentially the Maxwell dual of the AC
effect [6]. We will refer to it here as the He-McKellar-
Wilkens (HMW) phase. In the HMW effect, an electric
dipole d accumulates a topological phase while circulating
around, and parallel to, a line of magnetic charge (mono-
poles). To relate this to the AC effect, note that Maxwell’s
equations are invariant under the electric-magnetic dual-
ity transformations given by [7], AE ! AM , E ! B, e !
g, d ! m, and AM ! 2AE , B ! 2E, g ! e, m ! d.
Here, g is a unit of north magnetic monopole charge, and
AE and AM are electric and magnetic vector potentials,
defined in the absence of electric or magnetic monopoles,
respectively, such that B � = 3 AB if = ? B � 0, and
E � = 3 AE if = ? E � 0. As shown by He and McKel-
lar from duality, any derivation of the AC effect is also one
of the HMW phases [6]. We can therefore write the HMW
phase as wHMW � 24pdlM�h̄c, by inspection. This re-
sult is in agreement with Wilkens’ calculation that consid-
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ered the problem of a dipole moving in an electromagnetic
field [6,8]. Here, lM is the magnetic monopole charge per
unit length, and the minus sign arises from the asymmetric
nature of the duality transform. Our duality analysis also
predicts a fourth phenomenon, which is the dual of the AB
effect [Fig. 1(c)]. Here, a quantum magnetic monopole
acquires a topological phase as it circumnavigates a line
of electric dipoles (electric flux tube). Any derivation of
the Aharonov-Bohm effect is one of the dual Aharonov-
Bohm (DAB) effect, through the duality transform. By
inspection, the DAB phase is wDAB � 2gFE�h̄c, where
FE � 4p2d is the electric flux, with d the number of elec-
tric dipoles per unit length. All four of these phases are
topological in that the result does not depend on the par-
ticle velocity or the circulating path taken. They are all

FIG. 1. We indicate the Aharonov-Bohm, Aharonov-Casher,
dual Aharonov-Bohm, and He-McKellar-Wilkens topological
phase configurations in (a), (b), (c), and (d), respectively. Here,
e is an electric charge, g is a magnetic (monopole) charge, m
is a point magnetic dipole, and d is an electric dipole.
© 1999 The American Physical Society
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nonclassical in that there is no classical force acting on the
particle and the effect arises in the quantum phase of the
wave function. In addition, in the AB and DAB effects,
there is the additional feature that there are no B or E fields
at the location of the moving charge.

The immediate question is how to observe these dual
topological phases experimentally, since they both seem
to require isolated magnetic monopoles. For the HMW
phase, Wilkens proposed employing a pierced magnetic
sheet to mimic the required radial magnetic field and then
utilizing a matter-wave interferometer for molecules with
a permanent dipole moment [6]. The question of whether
or not this scheme will work, even in principle, has been
debated [9–11]. So far the effect has not been seen, or
at least recognized, in any experiment. It is the purpose
of this paper to provide two concrete physical setups in
which the HMW phase could be observed and interpreted
correctly. Discussion of possible observations of the DAB
effect is beyond the scope of this paper.

The DAB and HMW phases can be written in integral
form as

wDAB � 2
g
h̄c

I
AE ? dl � 2gFE�h̄c ,

wHMW � 2
1

h̄c

I
�d 3 B� ? dl � 24pmlM�h̄c ,

(1)

where AE is the dual-electric vector potential. The
AB and AC phases are then obtained immediately from
Eqs. (1) by the duality transforms. It is important to note
that Sangster et al. have shown that the AC effect can
be thought of as a motional Zeeman shift [5]. Consider
a Lorentz frame K 0 that is co-moving with any of the
circulating particles in Fig. 1. The Lorentz transforms for
the electric and magnetic fields are E0 � E 2 v 3 B�c
and B0 � B 1 v 3 E�c, in the small velocity limit [7].

Consider the AC effect [Fig. 1(b)], where B � 0 in the
lab frame and E � 2lEr̂�r is the radial electric field from
the line of charge. (Here, r and r̂ are the radial and
radial-unit vectors, respectively.) As the magnetic dipole
circulates about the line of charge, in the co-moving frame
the dipole couples to the field via the Hamiltonian, H 0

AC �
2m ? B0, giving rise to a Zeeman phase shift, wAC �H

H 0�t� dt�h̄, integrated over the circulation time. This
is precisely the AC phase when one Lorentz transforms
back into the lab frame and performs a change of variable,
v � dl�dt. Our argument here is good to first order in
y�c, whereas the more complete treatment of Sangster and
colleagues is good to all orders [5]. Maxwell duality tells
us immediately that the dual HMW phase is then— to all
orders in y�c—a motional Stark effect, with H 0

HMW �
2d ? E0 in the co-moving frame of the electric dipole.
In the HMW lab frame, E � 0, and hence HHMW �
d ? �v 3 B�c�, which is the Röntgen interaction employed
in the derivation by Wilkens [6,8].

For completeness, let us also analyze the AB and DAB
effects in the co-moving frame. In the small velocity limit,
the potentials transform as the components of a covariant
four vector [7], V 0 � V 2 v ? A�c, A0

k � Ak 2 Vv�c,
and A0

� � A�. Here, V is the scalar potential, and the
parallel and perpendicular notations are with respect to the
direction of motion. The general interaction Hamiltonian
is HAB � 2eV 1 ep ? A�mc, but this reduces to H 0

AB �
2eV 0 in the co-moving frame where the momentum p0 �
0. By Lorentz transforming to the lab frame, we get

wAB �
1
h̄

I
H 0

AB�t� dt � 2
e
h̄

I
V 0 dt

�
e
h̄c

I
A ? v dt �

e
h̄c

I
A ? dl , (2)

which is the AB phase [Eq. (1)]. The interpretation is that
in the co-moving frame the circulating charge experiences
a constant voltage difference across the branches of the
interferometer. This electrostatic potential gives rise to the
AB phase shift when integrated over the circulation time.
It is easy to show that E0 and B0 are still zero. Similar
arguments hold for the DAB phase.

We move to our experimental proposals for observing
and interpreting the HMW phase. The key is to employ
the same transformation that Sangster et al. used to en-
hance the AC effect in neutral atoms [5]. The difficulty
with a demonstration of the AC effect with matter-wave
interferometry is that it is challenging to maintain a large
enough voltage on a single wire of charge to see the effect
in the configuration of Fig. 1(b). In the inset of Fig. 2,
one sees that the same AC phase would be obtained if
the dipoles were made to follow identical paths on one
side of the wire, but in a superposition of up and down

FIG. 2. Experiment to measure the HMW phase. Metastable
hydrogen atoms are generated in the atom source, and they then
enter the magnetic field region where the HMW phase couples
the metastable 2s to the rapidly decaying 2p. The excited
state experiences a HMW phase shift that is proportional to
magnetic field B, producing a phase-dependent dumping of the
metastable 2s into the ground state 1s, which is then detected.
Inset: starting with the original AC configuration (left), note
that the same effect occurs if the particle circulates only
counterclockwise in a superposition of up and down dipoles
(middle). Since the field is constant along the path, we replace
the line of charge with a parallel plate configuration (right).
This same transformation applies to the dual HMW effect,
converting a line of magnetic monopoles into an ordinary dipole
magnet.
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magnetic moments. The single wire may then be replaced
with a parallel-plate capacitor that maintains the same con-
stant electric field along a now straight trajectory (inset of
Fig. 2). Since the electric field across the two plates can
be made very large compared to that near an isolated wire,
this enhances the AC for easy measurement. The super-
position of magnetic moments is prepared by exciting an
ensemble of magnetic sublevels, and the measurement of
the phase is made by two-pulse Ramsey interferometry [5].

By Maxwell duality, the same transformation will work
for a measurement of the HMW effect in neutral atoms.
In this case the plus and minus signs in the inset of Fig. 2
represent magnetic charge, and the moving quantum dipole
is electric. This amounts to replacing the unphysical line
of magnetic monopoles with the north and south poles of
an ordinary magnet, and the need for the line of magnetic
monopoles has been eliminated. Finally, we need only
specify an atomic state that can be prepared in a superposi-
tion of up and down electric dipole moments. Nature pro-
vides us with such systems in excited hydrogenlike atoms
and ground-state ammonia molecules.

Consider the original HMW setup of Wilkens trans-
formed into the Sangster configuration of the inset of
Fig. 2, which requires a superposition of dipoles in one
atom on one path. The excited hydrogenlike atoms have
a degeneracy of states with opposite parity. Hence, the
superposition of such levels results in energy eigenstates
without definite parity. That is, the expectation of their
electric dipole moment does not vanish [12]. This fact is
responsible for the first-order Stark effect in hydrogenic
atoms and vanishes in nonhydrogenic atomic systems.
Consider the 2s and 2p first-excited states of hydrogen,
jnlm� � j2lm�, where l [ �0, 1	 and m [ �21, 0, 1	. Ap-
plying degenerate perturbation theory, the linear Stark
effect splits the degenerate m � 0 level into two compo-
nents, with energy eigenvalues and eigenfunctions given
by D´6 � 63aBeE0 and jc6� � �j200� 6 j210�	�

p
2,

respectively [12]. Here, E0 is the electric field in the co-
moving frame. The jnlm� eigenstates have definite parity
and hence a zero dipole expectation value. However, in
the new basis the states jc6� are not parity eigenstates and
have definite up and down dipole values. Inverting the
transformation, we find for the 2s and 2p states j200� �
�jc1� 1 jc2�	�

p
2 and j210� � �jc1� 2 jc2�	�

p
2, re-

spectively. This representation shows that these excited
states are equal superpositions of up and down electric
dipole moments— the condition that is required for the
Sangster-transformed HMW configuration. (For this ar-
gument, we have suppressed the hyperfine structure depen-
dence, since the bulk of the effect is due to the degeneracy
of the orbital magnetic sublevels. Hyperfine effects are re-
stored in the exact calculation below.)

For our first proposed experiment we use a simple time-
of-flight measurement. Suppose we have a source of meta-
stable hydrogen atoms in the 2s state (Fig. 2), which are
easily made [13–17]. Such atoms have an exceedingly
long lifetime of about t2s � 0.14 s, since the transition
2488
to the ground state is dipole forbidden [18]. At typical
atomic beam velocities of y � 106 cm�s, the lifetime is
effectively infinite during passage through a 1.0 cm mag-
netic field region. As the atom propagates the metastable
2s state will, in the co-moving frame, experience a field E0

and will be Stark shifted. Considering the time of flight
between the magnetic poles and transforming into the lab
frame, the HMW phase and the time-dependent wave func-
tion become [18]

wHMW � 3aBeBL�h̄c � 3aBeByt0�h̄c , (3a)

jC�t�� � j200� cos�wHMW t�t0� 1 ij210� sin�wHMW t�t0� .
(3b)

Here, aB is the hydrogenic Bohr radius, L is the distance
flown between the magnetic poles, and t0 is the correspond-
ing time of flight. If B is measured in Gauss and L in cen-
timeters, then Eq. (3a) can be written wHMW � 0.24BL.
However, the 2p state decays rapidly to the ground state
by a dipole transition and has a very short lifetime of only
t2p � 1.6 3 1029 s. Therefore, once in the 2p state the
atom will decay into 1s over a distance of about 16 mm,
long before reaching the detector. As the wave function
oscillates between 2s and 2p, as per Eq. (3b), the HMW
phase shift converts metastable 2s atoms into ground state
1s hydrogen at a rate depending on the phase-dependent
oscillation period, T � pt0�wHMW . This electric-field-
induced decay is called the “Stark quenching” of meta-
stable, hydrogenlike atoms. It is a previously measured
effect that has been seen with both applied external electric
fields [14] and with magnetic-induced motional Röntgen
electric fields [15–17]. In the latter case, the effect was
used as a magnetic-field-dependent beam polarizer in 1952
by Lamb and Retherford [15] and more recently by Robert
et al., as a velocity selector [16]. The earliest observation
of motional Stark quenching was probably made in 1916
by Wien [17]. What is new here is the interpretation of
the phenomenon in terms of the HMW phase.

The dumping of 2s to 1s states becomes very efficient
when the period of the 2s to 2p oscillation is nearly equal
to the 2p decay rate [18]. This resonance occurs at the
motional Stark-induced level crossing between 2s and 2p
[16]. We will assume a beam velocity of y � 106 cm�s.
In this case, the resonance condition requires a rather
strong field of B � 8.12 3 103 G, which will induce
almost complete conversion. However, at smaller fields
we may take the full motional-Stark-quenched, radiation-
rate equations [14] and integrate them over solid angle
to compute the total field-induced atomic decay rate g.
By restoring the suppressed hyperfine dependence, to first
order in B and the fine-structure constant a, this rate can
be written as

g�2s1�2 ! 1s1�2� �
310

28

1
a3

a3
B

h̄

µ
yB
c

∂2

�
38

28

1
a4

aB

ct2
0

w2
HMW , (4)
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where the HMW phase wHMW is given by Eq. (3a). If we
take B in units of Gauss, this can be written conveniently
as g � 92.6B2, emphasizing the quadratic dependence on
the magnetic field. Taking an exponential decay with L �
1.0 cm, then t0 � 1026 s and the initial metastable flux in
the 2s1�2 state will decay to 1�e of its original value for
a field on the order of B � 100 G. These numbers are in
good agreement with the velocity-selection experiments of
Robert et al. [16]. Such a magnetic field induces a HMW
phase shift of about wHMW � 8p. Our calculation in-
cludes all relativistic effects, including the hyperfine spin
structure, to first order in a. We start with the full quan-
tum electrodynamic (QED) expression of Drake et al., for
the Stark-quenched photon angular decay probability, av-
eraged over the atomic spin polarization [14]. We then
average the photon flux over spherical angle to get the to-
tal emission rate, which we identify with the atomic de-
cay rate.

For a second experimental consideration, Chiao has
pointed out that the ammonia molecule can be prepared
in a superposition of up and down electric dipoles [19].
This can be done by applying a p�2 microwave pulse at
the NH3 ground vibrational two-level inversion splitting at
v � 23 GHz. The result is an equal superposition of the
two inversion states, which have opposite parity. Thus the
state has no definite parity and hence has a nonzero dipole
moment, which is susceptible to the motional Stark effect.
The HMW phase becomes wHMW � daBL�h̄c, where
da is now the ammonia dipole moment. However, both
inversion states of the ammonia molecule are stable, and
hence one has time to use two-pulse Ramsey spectroscopy
on the system, as was done in 1951 with the first ammonia
molecular clock experiments of Lyons et al. [20]. The
setup would be the same as in Fig. 2, but now with an
ammonia beam and a p�2 microwave pulse applied at
both the entrance and exit of the magnetic field region.
The HMW phase is lifted directly out of the Ramsey
interference fringes in a state-dependent detection process,
analogous to the measurement of the AC effect in neutral
atoms [5]. The phase shift should be easily visible with
magnetic fields on the order of 100 Gauss.

In summary, we have considered the Maxwell duality
transformations among the four topological phases found
in the Aharonov-Bohm, Aharonov-Casher, dual Aharonov-
Bohm, and He-McKellar-Wilkens effects. In particular,
the DAB and HMW effects are derived trivially from the
AB and AC effects via duality. In addition, we have
looked at the simplification that comes from Lorentz boost-
ing into the co-moving frame of the quantum particle. In
this frame the AB and DAB fields appear as if induced by a
static potential differential, and the AC and HMW effects
are interpreted as motional Zeeman and Stark shifts, re-
spectively. Finally, we propose a specific transformation
of the HMW configuration into an ordinary dipole elec-
tromagnet setup that allows for the experimental observa-
tion and interpretation of the HMW phase. This phase
can be seen in the excited states of hydrogenlike atoms via
the first-order Stark shift in the co-moving frame. Such
motional Stark shifts have already been seen experimen-
tally, but have not hitherto been interpreted in terms of the
HMW phase [15–17]. We also propose a different direct
HMW phase measurement using a Ramsey two-pulse in-
terferometer with ammonia beams and microwaves [20].
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