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In the context of the decoherent histories approach to quantum theory, it is shown that a class
of macroscopic configurations consisting of histories of local densities (number, momentum, energy)
exhibits negligible interference. This follows from the close connection of the local densities with the
corresponding exactly conserved (and so exactly decoherent) quantities, and also from the observation
that the eigenstates of local densities (averaged over a sufficiently large volume) remain approximate
eigenstates under time evolution. The result is relevant to the derivation of hydrodynamic equations
using the decoherent histories approach.

PACS numbers: 03.65.Bz
The key step in many studies of emergent classicality
from quantum mechanics is the demonstration that certain
types of quantum states of the system exhibit negligible
interference. Initial superpositions of such states may
therefore be effectively replaced by statistical mixtures.
This, loosely speaking, is decoherence, and has principally
been demonstrated for the situation in which there is a
distinguished system, such as a particle, coupled to its
surrounding environment [1].

Most generally, decoherence typically comes about
when the variables describing the entire system of interest
naturally separate into “slow” and “fast,” whether or not
this separation corresponds to, respectively, system and
environment. (See Ref. [2] for a discussion of the condi-
tions under which the total Hilbert space may be written
as a tensor product of system and environment Hilbert
spaces.) If the system consists of a large collection of in-
teracting identical particles, as in a fluid, for example, the
natural set of slow variables is the local densities: energy,
momentum, number, charge, etc. These variables, in fact,
are also the variables which provide the most complete
description of the classical state of a fluid at a macro-
scopic level. The most general demonstration of emer-
gent classicality therefore consists of showing that, for a
large collection of interacting particles described micro-
scopically by quantum theory, the local densities become
effectively classical. Although one might argue that the
system—environment mechanism might play a role, since
0031-9007�99�83(13)�2481(5)$15.00
the collection of particles are coupled to each other, deco-
herence comes about in these situations for a different rea-
son: It is because the local densities are almost conserved
if averaged over a sufficiently large volume [3]. Hence,
the approximate noninterference of local densities is due
to the fact that they are close to a set of exactly conserved
quantities, and exactly conserved quantities obey superse-
lection rules.

Intuitively appealing though this argument is, it is
clearly a quantitative issue. The object of this Letter is
to show that, under certain reasonable conditions, local
densities averaged over a sufficiently large volume are
indeed approximately decoherent as a result of their close
connection to exact conservation.

We will approach the question using the decoherent
histories approach to quantum theory [3–5], which has
proved particularly useful for discussing emergent clas-
sicality in a variety of contexts. (The extent to which
the approach fully explains emergent classicality has been
criticized [6]. This paper concerns the mathematical
properties of the approach, as it currently stands, and
adds nothing to that debate. See Ref. [7], and references
therein for further discussion.) The central object of in-
terest is the decoherence functional,

D�a, a0� � Tr�CajC� �CjC
y
a 0� . (1)

The histories are characterized by the initial state jC�
and by the time-ordered strings of projection operators
© 1999 The American Physical Society 2481



VOLUME 83, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 27 SEPTEMBER 1999
Ca � Pan �tn� · · · Pa1 �t1� (where a denotes the string of
alternatives a1, a2, . . . , an). Intuitively, the decoherence
functional is a measure of the interference between pairs
of histories a, a0. When it is zero for a fi a0, we
say that the histories are decoherent and probabilities
p�a� � D�a, a� obeying the usual probability sum rules
may be assigned to them. Although not addressed here,
one can then ask whether these probabilities are strongly
peaked about trajectories obeying classical equations of
motion. For the local densities, these equations will be
hydrodynamic equations, and these and closely related
aspects of emergent classicality have been pursued at
greater length elsewhere [2,7–9].

We consider the class of systems which is described at
the microscopic level by a Hamiltonian of the form

H �
X
j

√
p2

j

2m
1

X
�.j

f�jqj 2 q�j�

!
. (2)

For definiteness, we will concentrate on the case of a
dilute gas with short-range interactions, but it will be
clear that the physical ideas are reasonably general. The
local densities of interest are the number density n�x�,
the momentum density g�x�, and the energy density h�x�,
defined by

n�x� �
X
j

d�x 2 qj� , (3)

g�x� �
X
j

pjd�x 2 qj� , (4)

h�x� �
X
j

√
p2

j

2m
1

X
�.j

f�jqj 2 q�j�

!
d�x 2 qj� (5)

(suitably ordered, in the quantum case). We are interested
in local densities smeared over a volume V . The effect
of this is to replace the delta functions with a window
function, denoted dV , which is zero outside V and
1 inside. It is also useful to work with the Fourier
transforms of the local densities, denoted n�k�, g�k�,
h�k�. So, for example, the local number density at
wavelength k is

n�k� �
X
j

eik?qj . (6)

Exact conservation is obtained in the limit k � jkj ! 0,
or V ! ` in (3)–(5).

We would like to compute the decoherence functional
for histories consisting of projections onto the operators
(3)–(5). (The construction of the projectors is described in
more detail in Ref. [7].) In the case of exact conservation,
k � 0, we have exact decoherence simply because the
projectors in Eq. (1) all commute with H and with each
other [10]. Our main task is therefore to show that as
k increases from zero there is still a nontrivial regime
in which decoherence is approximately maintained. A
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significant result of this type has been established already
by Calzetta and Hu for the case of local temperature T �x�
obeying the diffusion equation [9]. They took their initial
state to be close to the equilibrium state, whereas here,
by contrast, initial macroscopic superposition states are
considered.

We begin by rewriting the exact conservation case in
a simple way that makes its generalization to locally
conserved quantities more apparent. Suppose the histories
are projections onto some conserved quantity, Q. Let the
initial state be a superposition of eigenstates of Q,

jC� �
1
p

2
�ja� 1 jb�� , (7)

where �a jb� � 0 and

Q̂ja� � aja�, Q̂jb� � bjb� . (8)

Since the Pa’s are projections onto Q, Pa either annihi-
lates or preserves ja� and jb�. Take the case of a history
with just two moments of time (the generalization to more
times is trivial). The only nonzero off-diagonal terms of
the decoherence functional are of the form

D�a, a0� � 1
2 Tr�Pa2e

2 i

h̄
Ht
ja� �b j e

i

h̄
Ht�

�
1
2 Tr�Pa2 jat� �btj� . (9)

But Q is conserved; hence �Pa2 , H� � 0 and

Pa2 jat� � Pa2e
2 i

h̄
Ht
ja�

� e2 i

h̄
HtPa2 ja� � jat� (10)

(or equals zero if a2 does not correspond to a). It follows
that

D�a, a0� �
1
2 Tr�Pa2 jat� �btj�

�
1
2 �bt jat� �

1
2 �b j a� � 0 (11)

and therefore we have decoherence.
Now suppose that the operator Q is one of the local

densities (3)–(5), so it is no longer exactly conserved.
The steps up to Eq. (9) still hold. But to go further, we
need to know how the eigenstates of the local densities
behave under time evolution. A reasonable supposition,
which will be justified, is the following. Let us suppose
that under time evolution, the eigenstates of Q remain
approximate eigenstates. That is, initially we have (8),
but under evolution to time t, Q̂jat� � �Q� jat� or, more
precisely,

�DQ�2

�Q�2 ø 1 ; (12)

i.e., the state remains strongly peaked in the variable Q
under time evolution. The states are then approximate
eigenstates of the projectors, so that in place of Eq. (10),
we have the approximate result Pa2 jat� � jat� (or equals
zero) as long as the width of the projection is much greater



VOLUME 83, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 27 SEPTEMBER 1999
than the uncertainty �DQ�2. Hence Eq. (11) follows
approximately, and we get approximate decoherence to
the extent that the approximation (12) holds.

The key point is therefore the following: Approximate
decoherence is assured for histories of operators Q whose
eigenstates have the property that they remain strongly
peaked in Q under time evolution, as characterized by
(12). To demonstrate decoherence of the local densities,
therefore, we need only find their eigenstates and show
that they satisfy the localization property (12) under time
evolution. (Note, incidently, that the above argument
actually assures decoherence of any variables Q satisfying
the localization property. The particular significance of
the local densities is that they are continuous functions
of the coarse graining scale k, so are guaranteed to satisfy
the requisite property if k is sufficiently close to zero.)

Since the three operators (3)–(5) do not commute, ex-
act simultaneous eigenstates cannot be found. However,
a useful class of approximate eigenstates of all three op-
erators are the states consisting of products of N identical
terms,

jC� � jc� ≠ jc� ≠ · · · ≠ jc� . (13)

These may be shown to be eigenstates (of the local
number density, for example) by observing that the object
�Dn�x��2��n�x��2 goes like 1�N for large N (see Ref. [7],
for example). It is essentially the central limit theorem
(see also Ref. [11]). For the number and momentum
density it relies on the fact that they are sums of
identical one-particle operators. For the local energy
density, it additionally requires the smearing volume to be
sufficiently large, compared to some length scale indicated
by the interactions. Some tuning of the state jc� can be
carried out to ensure that (13) is an optimal approximate
eigenstate of all the local densities but this will not be
done here. (Also, the passage to exact eigenstates of n�k�,
g�k�, h�k� as k ! 0 can be seen explicitly if the one-
particle states jc� are taken to be one-particle momentum
eigenstates).

The question is now what happens to the eigenstates
(13) of the local densities under time evolution by the
Hamiltonian (2). Consider first the trivial but enlightening
case in which there are no interactions. In this case,
the time-evolved eigenstates jat� remain of the product
form (13), so they are still approximate eigenstates of the
local densities (but with a time-evolved eigenvalue) for
the same reasons as above. Hence there is approximate
decoherence.

Decoherence in the noninteracting case comes about
for two reasons. First, it is due to the fact that a state
of the form (13) will remain strongly peaked about the
average values of the local densities n�x�, g�x�, h�x�
under time evolution, and thus the state is essentially
undisturbed by the projectors (as long as their widths
are sufficiently large). Second, it is due to the almost
trivial fact that the orthogonality of the two elements of
the initial state is preserved by unitary evolution. This
second fact is important because the first one is not always
sufficient to guarantee decoherence. Although the state
remains strongly peaked about the average values of the
local densities, these average values do not necessarily
obey deterministic equations. In the case of histories
characterized by number density only, for example, �n�x��
at time t is not uniquely determined by �n�x�� at the initial
time [in the state (13)]. That is, in Eq. (9), jat� and jbt�
may in fact be peaked about the same value of number
density, even though the initial values are different. The
decoherence is therefore not in fact due to an approximate
determinism (such as that used in the phase space histories
of Omnès [5]). It is necessary only that the evolved
states are essentially undisturbed by the projectors and,
therefore, that the two orthogonal components of the
initial state are eventually overlapped at the final time,
as in Eq. (11), to give zero.

The next and most important task is to show that the
above story is in fact still true, with qualifications, in
the presence of interactions. The complete description
of N interacting particles is complicated but we can
make some progress by making two assumptions which
are standard in kinetic theory [12]. It is notationally
convenient in what follows to work with a Wigner
function, rather than quantum state. Hence associated
with the full N-particle wave function is an N-particle
Wigner function WN �p1, q1, . . . , pN , qN �. Our first
assumption is that the three-particle correlations are
negligible. It means that all the physics is contained
in the one- and two-particle reduced Wigner functions
W1�p1, q1� and W2�p1, q1, p2, q2�.

We again take as our initial state the approximate
eigenstate (13) and let it evolve, so correlations will
develop. The degree to which the particles become
correlated is contained in the two-particle distribution W2
of the evolved eigenstate. On general grounds, we expect
that the interparticle correlations will be important only
on some length scale L, and beyond that length scale, they
will be uncorrelated. That is, we will assume that

W2�p1, q1, p2, q2� � W1�p1, q1�W1�p2, q2� (14)

for jq2 2 q1j . L, and otherwise W2 will have a form
indicating nontrivial correlations. This is our second
assumption. It is physically reasonable for uncorrelated
initial states of the form (13) with a short-range interaction
(and it is in fact a key assumption in the derivation of the
Boltzmann equation [12]). It would not of course be an
appropriate assumption for correlated initial states, but the
point is that we are interested in approximate eigenstates
of the local densities, and a useful class of such states has
the uncorrelated form (13).

Given the above assumptions, it is now reasonably
straightforward to argue that the state is still strongly
2483
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peaked about the average values of the local densities, as
long as V ¿ L3. For example, for the number density,
we have

�n�x�� �
X
j

�dV �qj 2 x�� � N
Z

V
d3q p�q� , (15)

where p�q� is the one-particle probability distribution of q
(obtained by integrating the one-particle Wigner function
over p). Similarly,

�n2�x�� �
X
j�

�dV �qj 2 x�dV �q� 2 x��

� N�dV � 1 �N2 2 N� �dV �q1 2 x�dV �q2 2 x�� ,

(16)

where we have used d
2
V � dV and also an assumption of

identical particles to reduce the sum over j, � to particles
labeled 1 and 2. We now have
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�Dn�x��2 � �n2�x�� 2 �n�x��2

� N2��dV �q1 2 x�dV �q2 2 x�� 2 �dV �2�

1 N��dV � 2 �dV �q1 2 x�dV �q2 2 x��� .

(17)

If there is no correlation at all between the particles,
the coefficient of N2 would vanish, so �Dn�x��2��n�x��2

would go like 1�N , which goes to zero as N ! `.
This is the standard central limit theorem result indi-
cated earlier for the noninteracting case. With interac-
tions, the coefficient of N2 is no longer zero. We now
need to show, therefore, that this term is still sufficiently
small for �Dn�x��2��n�x��2 to remain small as N ! `.
Introducing the two-particle distribution p�q1, q2� (ob-
tained by integrating p1, p2 out of W2), it is readily shown
that the leftover terms as N ! ` are
�Dn�x��2

�n�x��2 �

R
V d3 q1

R
V d3 q2�p�q1, q2� 2 p�q1�p�q2��

�
R

V d3q p�q��2 . (18)
This is clearly zero if there are no correlations. In
the interacting case we use the assumption (14), which
implies that

p�q1, q2� � p�q1�p�q2� (19)

for jq1 2 q2j . L, and otherwise nontrivial correlations
exist. Hence the integral in the numerator takes contribu-
tions only from the region jq1 2 q2j , L.

To see that (18) is small, note that in the numerator, the
integral is over a volume V 2 in the six-dimensional two
particle configuration space. If V ø L3, the factorization
of p�q1, q2� for jq1 2 q2j . L makes no difference,
since q1 and q2 can never be far enough apart in the
integrand (assuming V is regular in shape). However, if
V ¿ L3, the V 2-sized integration region is substantially
reduced in size to V 3 L3. On dimensional grounds
the numerator is therefore proportional to a number of
order VL3, and the denominator to V 2 (perhaps with other
factors common to both). This means that

�Dn�x��2

�n�x��2 	
L3

V
. (20)

This order of magnitude estimate becomes exact if we
assume that the probabilities are constant in the region
of nontrivial correlation (another common assumption of
kinetic theory [12]). Hence the state will be strongly
peaked about the average of n�x� if V ¿ L3.

It is possible to see on physical grounds why one ex-
pects a result of the form (20) to hold quite generally. In
the noninteracting case we used the central limit theorem
result that �Dn�2��n�2 goes like 1�N . In the interacting
case, the state is no longer of the product form (13), but
an analogous result still holds. The point is that the cor-
relations that develop extend only over a (typically small)
volume of size L3, so the system breaks up into a large
number of essentially identical uncorrelated regions of
this size. Therefore each smearing volume V , if much
greater than L3, contains of order V�L3 identical uncor-
related regions each of which contribute equally to the
local density averaged over V . Loosely speaking, a cen-
tral limit theorem-type result again applies, not to the N
uncorrelated particles in the same state, but to the V�L3

uncorrelated regions. So 1�N is replaced by L3�V in the
central limit theorem, and hence the above result.

Similar results hold for the local momentum and en-
ergy density. We have therefore demonstrated the desired
result: A class of eigenstates of the coarse-grained local
densities remain approximate eigenstates under time evo-
lution as long as the smearing volume is much greater than
the correlation volume of these states. Decoherence of
these variables then follows. More details of this work,
including a discussion of the approach to local equilibrium
and the emergence of hydrodynamic evolution equations,
will be published elsewhere [13].

I am grateful to Todd Brun, Jim Hartle, Ray Rivers, and
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