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Structure of the Resonance Attractor for Spiral Waves in Excitable Media
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Recent experiments in the light-sensitive Belousov-Zhabotinsky reaction have shown that a pulsatory
modulation of excitability controlled by a feedback can force the spiral wave core to execute a circular
trajectory around a fixed measuring point of the medium. A theory is developed to explain the existence
and stability of this resonance attractor which is based on reducing the spiral wave dynamics to a low-
dimensional map. The analysis of this map predicts the existence of a discrete set of stable circular
trajectories in good quantitative agreement with numerical simulations of the two-component Oregonator
model. Only a small part of this set has so far been observed experimentally.

PACS numbers: 82.40.Bj, 05.45.Ac, 47.54.+r, 82.20.Wt
Spiral waves are ubiquitous structures in reaction-
diffusion systems of both physical and biological origin
[1–3]. These waves typically rotate rigidly or meander
around a central core region and their dynamics be-
comes even richer if the medium undergoes an external
forcing. A spatially uniform periodic forcing results in
an entrainment of spiral waves [4,5] or in a resonance
drift of the core predicted theoretically [6] and observed
recently in experiments with the light-sensitive Belousov-
Zhabotinsky (BZ) reaction [7]. Numerical simulations
[8] and theoretical analysis [9] have confirmed that
the properties of the resonant drift for rigidly rotating
and for meandering spiral waves are very similar. The
phenomenon of resonant drift is of interest because it
provides a direct means to control spiral motion, and may
have interesting applications such as to defibrillate cardiac
tissue by pushing out this undesirable source of excitation
[10]. Implementing control, however, generally requires
some form of feedback since the basic spiral rotation
period and location are not usually known beforehand.

One of the simplest feedback schemes consists of mea-
suring the activity level at a particular point of the system
and applying a brief spatially uniform pulsatory modula-
tion at a fixed time delay t after the passage of a wave front
at this point [11]. As demonstrated in the light-sensitive
BZ reaction, the measuring point imposes a center of sym-
metry for the dynamics and the resonant drift results in
a clocklike motion of the spiral wave core along a circu-
lar pathway around this center [7,11]. Moreover, it was
shown that the size of this resonance attractor can be
changed by varying the parameters of the feedback loop
[7,11]. It is clear also that this size should depend on the
parameters of the medium [12].

In this Letter, we develop a simple theory that allows us
to explain the generic features of this resonance attractor,
and we validate its predictions by numerical simulations
of the two-variable Oregonator model. The main idea is
to describe the dynamics of the spiral wave core in terms
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of an iterative map that gives the new location of the core
after each applied pulse.

In view of the experimental motivation, we examine
a light-sensitive excitable media like the ruthenium-
catalyzed BZ reaction. Wave propagation in this medium
can be simulated by the Oregonator model [13,14] with an
additional term f�t� � f0 1 I�t� describing the effects
of an external illumination [4,8]:
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The variables u and y describe the concentrations of the
autocatalytic species HBrO2 and the catalyst, respectively.
The parameters e � 0.05, q � 0.002, f � 3.5, and f0 �
0.01 are fixed.

Under these parameters the spiral wave [i.e., a re-
gion where u�x, y, t� . 0.1] rotates rigidly with the pe-
riod T0 � 6.85 around a circular core as shown in Fig. 1
[15]. The thick (thin) solid lines show the front (back) of
the wave, where ≠u�≠t . 0 (≠u�≠t , 0). By definition
the spiral wave tip is a point on the contour line, where
≠u�≠t � 0. The trajectory of the spiral tip describes the
boundary of the spiral core. The radius of the core in-
creases when the intensity f0 of a stationary and spatially
homogeneous illumination is increased [5,8]. Thus, the
application of a short impulse of the illumination results
in a sudden shift of the spiral core. The spiral wave core
dynamics is then the sequence of these shifts under a se-
quence of such impulses.

The feedback algorithm implies that illumination im-
pulse I�t� should be generated each time that the wave
front passes through a particular measuring point [11].
Our aim is to describe the displacement of the spiral wave
core under such an external forcing. We measure the
position of the core center in a polar coordinate system
�R, w� with the origin at the measuring point (see Fig. 1).
© 1999 The American Physical Society 2453
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FIG. 1. A spiral wave rotating around a circular core is shown
at the time when the wave front (thick solid line) passes
through the measuring point (thin cross). The application
of an illumination impulse induces a shift of the spiral core
center (filled circle) to the new position (open circle) resulting
in a shifted steady-state circular trajectory of the spiral tip
(dotted curve). The trajectory of the spiral wave during some
intermediate process is shown by a dashed curve.

The angle a describes rotation around the spiral wave
core. This angle is measured from the line connecting the
core center and the measuring point. The shape of the
spiral front can be given by a function Q�r�, where �r , Q�
is the polar coordinate system with the origin at the core
center. Thus, the equation a � 2Q�R� is valid at the in-
stant when the wave front traverses the measuring point.
An illumination impulse with a duration D and an ampli-
tude A is generated after the time delay t. Let ai , Ri ,
and wi denote the value of these variables evaluated at the
time ti at which the ith external impulse is applied. By
the use of purely geometrical consideration (see Fig. 1), it
is straightforward to derive the following map to describe
the motion of the core center:

ai � v0t 2 Q�Ri� , (2)

R2
i11 � R2

i 1 h2 2 2Rih cos�c 1 ai� , (3)

wi11 � wi 2 arcsin��h�Ri11� sin�c 1 ai�� , (4)

where h and c denote, respectively, the absolute value
and the angular direction of the shift of the spiral core
due to one light impulse. Note that the above map is
effectively only two dimensional because fi does not
enter on the right-hand sides of (2) and (3). In general, h
and c can be measured experimentally or determined by
numerical integration of the reaction-diffusion equations.
Here, the integration of the model (1) yields the values
h � 1.75 and c � 1.446 for a single impulse with D �
0.3 and A � 0.004. For an impulse of the same duration
but of a negative amplitude A � 20.004, we obtained
h � 2.346 and c � 21.226.

The function Q�r� resulting from an integration of the
Oregonator model (1) is plotted in Fig. 2 by a solid line.
The radius rq represents the shortest distance between
2454
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FIG. 2. Function Q�r� (solid line) obtained for a spiral wave
in the Oregonator model (1). The dashed line represents the
asymptotic behavior of Q�r� for r ! `.

the spiral wave and the core center and corresponds to
the trajectory of the spiral tip. At this point the radial
direction from the core center is orthogonal to the front.
The function Q�r� increases with r in a vicinity of rq,
reaches a maximum value at r � rQ , and then starts to
decrease and becomes negative for r . r0. The dashed
line in Fig. 2 represents the asymptotic behavior for r !
`. This asymptote was identified as Q � Q0 2 2pr�l,
where Q0 � 1.2 and l � 34.5. As is well known, far
away from the core center, the shape of the wave front
can be described by an Archimedian spiral with a pitch
l. Near the core, however, the shape of the front
deviates considerably from an Archimedian spiral, and
Q�r� becomes a nonmonotonous function (see Fig. 2), as
described analytically in the large core limit [16].

Let us start by analyzing the system (2)–(4) under
the assumptions h�Ri ø 1 and jcj 2 p�2 ø 1, which
become accurate in the limit of a small amplitude and
short impulse. In this case, Eqs. (3) and (4) become

Ri11 � Ri 1 h sin�c� sin�ai� , (5)

wi11 � wi 2 h sin�c� cos�ai��Ri11 . (6)

The two-dimensional map defined by (2) and (5) has a
discrete spectrum of fixed points described by

Rs � Q21�v0t 2 kp� , (7)

as � kp, k � 0, 1, 2, . . . . (8)

These fixed points correspond to steady-state circular
trajectories of the core of radius Rs around the measuring
point, where Rs can take on a discrete set of values.
Several curves Rs � Rs�t� corresponding to different k in
(7) are plotted in Fig. 3(a) using the function Q�r� shown
in Fig. 2. Note that the function Q�r� becomes linear for
large r (see Fig. 2). In this limit Eqs. (7) and (8) should
describe an equidistant spectrum of fixed points with a
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FIG. 3. (a) Structure of the resonance attractor for c . 0.
The radius Rs of stable attractors (solid curves) and the
unstable separatrixes (dotted curves) are plotted as a function
of the time delay t. The dashed curves correspond to
the improved prediction of Eq. (10) and the thin solid line
indicates the smallest possible size of the resonance attractor.
(b) Magnification of (a) near the origin by the use of a different
scale.

spacing l�2, as was mentioned in [12]. However, this
linear approximation completely fails for Rs � RQ where
the function Q�r� is essentially nonlinear. In particular,
a magnified plot of the attractor with k � 0 is shown in
Fig. 3(b) by use of another scale.

Linearization of (2) and (5) around the fixed points
yields at once the stability condition

2h cos�kp� sin�c�
dQ

dR

É
Rs

,0 , (9)

for the attractor of radius Rs. Let us first examine
the implication of this stability condition for the case
c . 0. In this case, one part of each curve in Fig. 3
with Rs . rQ is associated with a negative slope dQ�dR.
This part therefore corresponds to a stable motion for
any odd k. The other part with Rs , rQ corresponds
to a positive slope dQ�dR and is stable for any even
k. All stable (unstable) steady states of the system
(2) and (5) are shown as solid (dotted) lines in Fig. 3.
For c , 0, the opposite situation is true and all dotted
(solid) lines in Fig. 3 correspond to stable (unstable)
attractors. It is important to stress that the dotted (solid)
line corresponding to a given unstable steady-state k for
c . 0 (c , 0) plays the role of a separatrix between the
basins of attraction of the stable attractors k 2 1 and k 1

1. Thus, the set of these separatrixes determines which
attractor is selected from an arbitrary initial condition.
Finally, the thin horizontal line in Fig. 3 corresponds to
Rs � rq. If the distance between the spiral core center
and the measuring point is smaller than rq, the wave front
never traverses the measuring point and no light impulse
is generated. Thus, in this case, the attractor is simply
the unperturbed rigid rotation of the spiral wave around a
circular core.
To test these predictions we have computed the size of
the resonance attractor by simulating (1) using positive
(negative) impulses I�t�. The results of these computa-
tions for A � 0.004 (A � 20.004) with the duration of
the light impulses D � 0.3 are shown in Fig. 3 as crosses
(diamond). The simulation data are located very close to
the solid or dotted lines predicted by the map defined by
(2) and (5). The small systematic error (about 5%) can
be corrected by using the original map (2) and (3) instead
of the approximation (2) and (5). Indeed, the analysis of
this map yields, instead of (7), the predictions

v0t � Q�Rs� 6 arccos�h��2Rs�� 2 c 1 2mp . (10)

Several stable branches corresponding to (10) are plotted
as dashed lines in Fig. 3. This more precise estimate
shows that, for a given t, the size of the attractor becomes
larger (smaller) with respect to the prediction of (7) for a
positive (negative) impulse.

Decreasing D leads to a better agreement with the
estimate (7). Results of such computations performed
for D � 0.1 and A � 0.003 (A � 20.003) are shown
by triangles (squares) in Fig. 3(b). A single positive
(negative) impulse for these parameters yields a shift of
the spiral core h � 0.49 and c � 1.52 (h � 0.46 and
c � 21.39), where c is closer to the limiting value
jcj � p�2 assumed in the derivation of (5) and (6).

Figures 4 and 5 illustrate that the iteration of the map
(2)–(4) predicts accurately the core evolution simulated in
the reaction-diffusion model (1) from an arbitrary initial
condition. In the example of Fig. 4(a) corresponding to
t � 0 and c . 0, the initial distance between the spiral
core center and the measuring point, R0 � 5.5, is below
the solid line (1) in Fig. 3(a) [Rs�0� � 24 for k � 1] but
above the dotted line (0) [Rs�0� � 5.2 for k � 0]. In
Fig. 4(b), the initial distance R0 � 39.0 is above the solid
line (1) in Fig. 3(a) but below the dotted line (2). Thus,
according to the predictions of the map, the same attractor
Rs�0� � 24 should be selected in both cases in agreement
with the simulation results.

FIG. 4. Trajectories of the spiral wave tip (thin solid line)
computed with the Oregonator model (1) for t � 0, A � 0.004,
and D � 0.3. Thick segments correspond to the application of
impulses. The core trajectories predicted by the map (2)–(4)
(thick solid lines) are in excellent agreement. The small open
circles indicates the initial location of the spiral wave tip. Scale
bar: 20. (a) and (b) correspond to different initial conditions
(see text).
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FIG. 5. Tip trajectories in the Oregonator model and core
trajectories predicted by the map (2)–(4) for t � 0, A � 0.003
(a); t � 0, A � 20.003 (b); and t � 0.5, A � 20.003 (c).
The impulse duration is D � 0.1. Scale bar: 10.

In Fig. 5(a), a trajectory with t � 0 and a positive
impulse is shown which corresponds to the smallest
possible size of the resonance attractor Rs � rq. In order
to reach this attractor, R0 was chosen within the interval
rq , R0 , r0. A small increase of R0 results in the
trajectory shown in Fig. 4(a). This correlates perfectly
with Fig. 3(b) because a separatrix (dotted line for k � 0)
is located quite close to this attractor. Next, this separatrix
transforms into a stable attractor if a negative impulse
is chosen [Fig. 5(b)]. In contrast to the previous case,
the basin of attraction for this attractor is relatively large
[between rq and Rs � 24 corresponding to the solid curve
(1) in Fig. 3(a)]. For this reason, the attractor was reached
even though the initial distance was rather large (R0 �
19.7). Finally, increasing t up to t � 0.5 results in the
trajectory shown in Fig. 5(c). In agreement with Fig. 3,
the spiral wave core starts to drift towards the measuring
point thereby decreasing the distance between the spiral
wave core and the measuring point. For this time delay
(t�T0 � 0.07), however, there are no attractors with a
radius smaller than the initial distance R0 � 19.7. As a
result the drift stops when the distance becomes shorter
than rq (thin solid line in Fig. 3). In this final regime the
measuring point is located inside the spiral wave core and
light impulses are no longer generated.

In summary, the simulations perfectly confirm the basic
structure of the resonance attractor displayed in Fig. 3.
The map (2)–(4) allows one to predict the possible sizes
of the resonance attractor for a given time delay t and
the core dynamics from an arbitrary initial condition as
illustrated by Figs. 4 and 5. Here, we have developed this
theory for rigid rotation of the unperturbed state and under
the assumption that all relaxation processes after the light
impulse is switched off occur on a time scale smaller than
the basic spiral period T0. The extension of this theory
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to include meander and longer time memory effects is an
interesting problem for future studies.

The theory elaborated in this Letter produces a clear ex-
planation of the experimental observation of a resonance
attractor under a pulsatory modulation of the medium ex-
citability controlled by a feedback [7,11]. In particular,
the dependence Rs�t� observed in [7] can be interpreted
as one of a discrete set of stable branches shown in Fig. 3.
Thus, the complex structure of the resonance attractor elu-
cidated here analytically and numerically should stimulate
future experimental studies in order to discover the other
predicted stable branches, not yet observed. Moreover,
the strategy of reducing the spiral wave dynamics to a low
dimensional map that describes the core evolution should
prove useful in a wide range of control applications.
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