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As far as entanglement is concerned, two density matrices of n particles are completely equivalent if
one can be transformed into the other by local unitary transformations. We present two methods to find
whether or not two generic density matrices of arbitrary numbers of spin-1�2 particles are equivalent.
Both methods describe density matrices in terms of a finite number of invariant parameters.

PACS numbers: 03.65.–w, 03.67.–a
Nonlocality is a fundamental characteristic of quantum
mechanics. Its importance lies not only in philosophical
considerations of the nature of quantum theory, but also in
applications where it has emerged recently that nonlocality
is the key ingredient in quantum computation [1] and com-
munication [2] and plays an important role in cryptography
[3,4]. It has become clear that entanglement is a resource
which may be manipulated (for example, by concentration
[5], dilution, or purification [6–8]).

From the point of view of nonlocality, two states are
completely equivalent if one can be transformed into the
other by means of local unitary transformations. How to
determine whether or not two states are locally equivalent
is still an open question. In this Letter we solve this
problem for systems containing arbitrary numbers of spin-
1�2 particles in generic mixed states.

As discussed in [9], the space of pure states of n spin-
1�2 particles is �2n

� �2 ≠ · · · ≠ �2; however, not all
of the 2n complex parameters have nonlocal significance:
the group of local transformations, U�2�n, acts on the
space of states, and two states which may be reached from
each other by local actions are equivalent as far as their
nonlocal properties are concerned. Each equivalence class
of locally equivalent density matrices is an orbit of this
group. For many purposes, only parameters describing
nonlocal properties are significant; an example is that any
good measure of entanglement must be invariant under
local transformations [6,10–13], and thus it should be a
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function of nonlocal parameters only. Here and henceforth
we will refer to parameters which are invariant under
local transformations as invariants. Invariants are also
relevant in discussions of Bell inequalities [14,15] and
teleportation, etc. [16]. A key question is to identify the
invariants.

In this paper we will focus on density matrices and show
that, for n $ 2, of the 22n 2 1 real parameters describing
density matrices of n spin-1�2 particles 22n 2 3n 2 1
are invariant under local transformations, U�2�n. For
an arbitrary set of n particles, the number of nonlocal
parameters is

Q
r d2

r 2
P

r d2
r 1 n 2 1 where dr is the

dimension of the state space of the rth particle. For n
spin- 1

2 particles we also show how to characterize generic
orbits, both by giving an explicit parametrization of the
orbits and by finding a finite set of polynomial invariants
which separate the orbits. Thus given two density matrices
we can compute explicitly whether they are on the same
orbit or not. Other authors have also discussed the use of
invariants in discussing entanglement [17,18] and applied
invariant theory to quantum codes [19].

In order to calculate the number of functionally indepen-
dent invariants it will be convenient to find the dimension
of the orbit of a generic density matrix under the group of
local transformations. The dimension of the orbit is the
number of parameters describing the location of a density
matrix on the orbit. The total number of parameters
(22n 2 1 real parameters) describing the space of density
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matrices minus the number of parameters describing a
generic orbit (the dimension of the orbit) gives the num-
ber of parameters describing the location of the orbit in the
space of orbits, i.e., the number of parameters describing
the nonlocal properties of the density matrices.

To fix notation, it will be convenient to consider the
case of a one-particle density matrix first. The space of
pure states of a single spin-1�2 particle is �2, and thus
a density matrix is a 2 3 2 complex matrix which is
Hermitian, positive, and with trace one, and may therefore
be described by three real parameters. A particularly
convenient representation of such a matrix is r � 1

2 �12 1

aisi�, where ai , i � 1, 2, 3 are real and si are the Pauli
matrices.

Under a local transformation by a unitary matrix U, r

is transformed as

r � UrUy. (1)

Every unitary matrix may be written as a product of an ele-
ment of SU�2� and a phase transformation, represented by
a unitary matrix eif12. This latter element clearly leaves
any density matrix invariant under the transformation (1)
so that when considering the action (1) we may restrict at-
tention to elements of SU�2�. In order to find the number
of invariants, it will be more convenient to find the dimen-
sion of a generic orbit under the action of SU�2�. To do
so one may work infinitesimally. Thus, associated with
the action of the Lie algebra of the group of local trans-
formations acting on the space of density matrices there is
a vector field: if we take an element T of a basis for the
Lie algebra, the action of the group element k � expieT
on an element r induces an action on functions from r to
�; and the vector field, XT , associated with the Lie algebra
element T is found by differentiating

XT f�r� def
�

≠

≠e
f�eieTr�je�0

�
≠

≠e
f�r 1 dr�je�0 . (2)

The linear span of tangent vectors at the point r associated
with the whole Lie algebra forms the tangent space to the
orbit at the point r and so the number of linearly indepen-
dent tangent vectors at this point gives the dimension of
the orbit.

A general element of the Lie algebra in the spin-1�2
representation is given by T � hisi , and its action on the
density matrix is to give an infinitesimal transformation
dr � i�T , r� where � , � is the matrix commutator.

We may therefore calculate the three vector fields Xi

associated with the Lie algebra elements si as

Xi � 2eijkaj
≠

≠ak
. (3)

We note that at generic values of a1, a2, a3 only two
of these tangent vectors are linearly independent since
a1X1 1 a2X2 1 a3X3 � 0. Thus the dimension of the
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generic orbit is two and therefore of the three parameters
describing a generic density matrix, two are noninvariant
leaving only one invariant parameter, as one expects since
only the single independent eigenvalue of r is invariant
under local transformations.

We note that the effect of the transformations (1) is to
act on the vector a by rotation by an orthogonal matrix,
i.e., an element of SO�3�—this follows from the fact that
aisi is the representative of a Lie algebra element and
the conjugation action (1) is the adjoint action of the
group on its Lie algebra. We may thus find a way of
exhibiting the invariant under local transformations: I �
aiajdij � jaj2 where we have used the fact that SO�3�
has an invariant tensor dij. We note that this invariant
may also be expressed as I � Tr �r2� 2

1
2 .

We now turn to the case of two-particle density matrices.
Such a density matrix has 15 real parameters, and the
maximum dimension that a generic orbit could have is six
[corresponding to two copies of SU�2�] if all the tangent
vectors corresponding to a basis of the Lie algebra were
independent. We will show that the tangent vectors do
indeed span six dimensions, and thus that there are nine
nonlocal parameters.

We may write a density matrix as

r �
1
4

�12 ≠ 12 1 a ? s ≠ 12 1 12 ≠ b ? s

1 Rijsi ≠ sj� . (4)

The action of a Lie algebra element of the subgroup SU�2�
acting on the first component of the tensor product is

d�1�r � 2
1
2

�akhmemkisi ≠ 12

1 Rkjhmemkisi ≠ sj� , (5)

with a similar expression coming from the action of a
Lie algebra element of the subgroup SU�2� acting on the
second component of the tensor product.

The vector fields corresponding to the six basis elements
sk ≠ 12, 12 ≠ sk are

Xk � 2
1
2

ekim

√
ai

≠

≠am
1 Rij

≠

≠Rmj

!
,

Yk � 2
1
2

ekim

√
bi

≠

≠bm
1 Rji

≠

≠Rjm

!
.

(6)

Consider the set Xk first: one can see that these three are
linearly independent at generic points by considering the
coefficients of ≠�≠ai , since a linear relation would have to
be of the form akXk � 0, but one can see that this relation
will not hold for nonzero a’s by looking at the coefficients
of the partial derivatives with respect to Rij . Similarly, by
considering the coefficients of the partial derivatives with
respect to b1, b2, b3, one sees that Y1, Y2, Y3 are linearly
independent. Finally, we note that the coefficients of the
partial derivatives with respect to b1, b2, b3 are zero for
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X1, X2, X3 and the coefficients of the partial derivatives
with respect to a1, a2, a3 are zero for Y1, Y2, Y3 so that
there can be no linear relation at all between the six vector
fields X1, X2, X3, Y1, Y2, Y3. Thus the dimension of the
orbit of a generic density matrix is 6 and thus the number
of nonlocal parameters, 15 2 6 � 9.

In general, we can consider a system of n particles
with individual state spaces of dimensions d1, . . . , dn. By
finding the number of linearly independent tangent vectors,
as above, it may be shown that out of the total number
of parameters only

Q
r d2

r 2
P

r d2
r 1 n 2 1 are nonlocal

invariants.
Let us now return to the case of n $ 2 spin-1�2 particles

and explicitly identify a set of invariant parameters which
characterize generic orbits. To be explicit, consider the
case of three spin-1�2 particles with density matrix which
may be written as
r �
1
8

�12 ≠ 12 ≠ 12 1 aisi ≠ 12 ≠ 12 1 bi12 ≠ si ≠ 12 1 gi12 ≠ 12 ≠ si 1 Rijsi ≠ sj ≠ 12

1 Sijsi ≠ 12 ≠ sj 1 Tij12 ≠ si ≠ sj 1 Qijksi ≠ sj ≠ sk� . (7)
The action by a local unitary transformation on the first
component in the tensor product induces the following
transformations on components of r: ai � Lijaj ; Rij �
LikRkj; Sij � LikSkj ; Qijk � LimQmjk where Lij is an
orthogonal matrix, and the other components of r do not
change. Local actions on the second and third compo-
nents of the tensor product induce similar transformations
of b, R, T , Q and g, S, T , Q, respectively, by orthogonal
matrices M and N independent of L.

We may fix a canonical point on a generic orbit as
follows: first let us define

Xii0 � QijkQi0jk , Yjj0 � QijkQij0k ,

Zkk0 � QijkQijk0 , (8)

and perform unitary transformations on particles 1, 2,
and 3 so as to move to a point on the orbit in which
X, Y , and Z are diagonal; generically the diagonal
entries are distinct and we can arrange them in de-
creasing order (X, Y , and Z are Hermitian, positive
matrices). The only remaining transformations which
leave X, Y , and Z in these forms are local unitary
transformations which induce orthogonal transformations
in which Lij , Mij , and Nij are one of the matrices
diag�1, 21, 21�, diag�21, 1, 21�, diag�21, 21, 1�.

We may specify a canonical point on the generic orbit
uniquely by specifying that all the components of a have
the same sign, and similarly for b and g. This method
works as long as X, Y , and Z have distinct eigenvalues and
the components of a, b, and g are not zero at the canonical
point on the orbit. The parameters which describe the
generic orbits are the components of a, b, g, R, S, T , and
Q at the canonical point on the orbit. We note that
the number of parameters describing the canonical point
are the 26 2 1 � 63 components of a, b, g, R, S, T , and
Q minus the 3 3 3 � 9 constraints that the nondiagonal
elements of X, Y , and Z are zero; thus the number of
nonlocal parameters is 54 as given by the general formula.

We note that the fact that the canonical point, as con-
structed, is unique means that all points on the same orbit
will have the same canonical representative: conversely, if
two density matrices r1 and r2 have the same canonical
form, then U1r1U

y
1 � rcanonical � U2r2U

y
2 for some U1

and U2, so that r2 � �Uy
2 U1�r1�Uy

2 U1�y, and thus r1 and
r2 are on the same orbit.

We now describe a finite set of polynomial invariants
which separate generic orbits by finding a set which allows
one to calculate the components of a, b, g, R, S, T , and
Q at this canonical point. The complete infinite set of
polynomial invariants is found by contracting the indices
of a, b, g, R, S, T , and Q with the invariant tensors dij and
eijk . However, we may find a finite set of invariants which
separates generic orbits. First we note that tr�X�, tr�X2�,
and tr�X3� determine the diagonal elements l

2
1, l2

2, and l
2
3

of X, and similarly for Y and Z. Now consider the three
invariants A2n � aT Xn21a, n � 1, 2, 3. We may write
these three invariants in the following way:

0
BB@

1 1 1
l

2
1 l

2
2 l

2
3

l
4
1 l

4
2 l

4
3

1
CCA

0
BB@

a2
1

a2
2

a2
3

1
CCA �

0
B@ A2

A4
A6

1
CA , (9)

where a1, a2, and a3 are the components of a at the
canonical point on the orbit. The Vandermonde matrix
L on the left of Eq. (9) has determinant �l2

1 2 l
2
2� �l2

2 2

l
2
3� �l2

3 2 l
2
1�, and we may solve for a2

1, a2
2, and a2

3 as long
as det L is nonzero. Also if the invariant

A9 � eijkai�Xa�j�X2a�k � a1a2a3 detL (10)

is nonzero, then we may determine the sign of the compo-
nents of a; recall that, by definition, all the components of
a have the same sign at the canonical point. The analo-
gous expressions B9, C9 determine the values of b and g

at the canonical point. The values of the components of R
at the canonical point may be calculated from the follow-
ing nine invariants:

Ir ,s � �Xr21a�i�Ys21b�jRij , r , s � 1, 2, 3 . (11)
245
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These nine equations may be put together into a matrix
form I � ����LF� ≠ �MG����R, where I and R are column
vectors with nine components and the matrix L is the
Vandermonde matrix in Eq. (9), M is the analogous matrix
with l

2
i replaced by m

2
i (the diagonal elements of Y ),

and F and G are diag�a1, a2, a3� and diag�b1, b2, b3�,
respectively.

We note that det�LF� � A9 and det�MG� � B9, so
since we are assuming that these are nonzero we may
invert the matrix equation to find the components Rij . The
components of S and T may be found in a similar way.
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Finally, we may use the 27 invariants,

Ir ,s,t � �Xr21a�i�Ys21b�j�Zt21g�kQijk , (12)

to find the components of Q at the canonical point on the
orbit in terms of the Ir ,s,t (there will, of course, be some
relations between these components due to the constraints
that X, Y , and Z are diagonal).

Thus, by showing that the following set of polynomial
invariants is sufficient to calculate the components of a
generic density matrix at the canonical point we have
demonstrated that they characterize generic orbits:
tr Xr , tr Yr , tr Zr ,

aTXr21a, bTYr21b, gTZr21g ,

a ? �Xa� ^ �X2a�, b ? �Yb� ^ �Y2b�, g ? �Zg� ^ �Z2g� ,

�Xr21a�i�Ys21b�jRij , �Yr21b�i�Zs21g�jTij ,

�Xs21a�i�Zr21g�jSij , �Xr21a�i�Ys21b�j�Zt21g�kQijk ; (13)
the indices r , s, t range over the values 1, 2, 3.
If two density matrices have different values of any of

these invariants they are not on the same orbit; if they have
the same value of all of these invariants, and if A9, B9,
and C9 are nonzero, then the density matrices are locally
equivalent.

We note that the number of independent components
of a generic density matrix at the canonical point is equal
to the number of functionally independent parameters
calculated at the beginning of this Letter. However, the
number of polynomial invariants needed to characterize the
generic orbit is greater than this; this is related to the fact
that the ring of invariants is nonpolynomial, i.e., that the
geometry of the space of orbits is nontrivial.

The procedure given above can be used for all n $

2: Use the tensors of highest rank and rank one in the
expression for r to fix a canonical point on the orbit;
the polynomials which separate the generic orbits are the
analogs of those used in the case n � 3.

In the case of n � 2 this method can be used but there
is some redundancy in the description we have given:
the matrices Xii0 � RijRi0j and Yjj0 � RijRij0 [using the
notation of (4)] have the same eigenvalues and the ma-
trix Rij is diagonal at the canonical point. In this case
there are nine functionally independent invariants which
specify the squares of the nonzero components of a, b,
and R at the canonical point on a generic orbit: trXn,
aT Xm21a, and bT Yp21b, where n, m, p take the val-
ues 1, 2, 3. Additional invariants are needed to specify the
signs of the nonzero components. The five invariants a ?

�Xa� ^ �X2a�, b ? �Yb� ^ �Y2b�, and aXr21Rb, r �
1, 2, 3, are sufficient to determine these signs for generic
orbits and hence separate these orbits. In fact, using
slightly different arguments, one can show that, in this
case, one can reduce the number of polynomial invariants
to ten, namely, trX, trX2, detR, aT Xr21a, aT Xr21Rb,
r � 1, 2, 3, and A9, which are subject to a single relation
expressing A2

9 as a function of the other invariants.
The general idea of investigating canonical points on

orbits in the way we have described is also appropriate
for higher spins, but the situation is somewhat more
complicated. Consider the example of two particles of
spin one in which case the unitary group under which
r transforms (by conjugation) is SU�3�. However, the
adjoint representation of SU�3� is not equivalent to SO�8�
but to an eight dimensional subgroup of it; this means
that we cannot use SU�3� transformations to bring 8 3 8
symmetric matrices to diagonal form. Thus the canonical
form is rather more complicated than in the case of spin-
1�2 particles.

The physical significance of the invariant parameters is
that they encode the entire information about the nonlocal
properties of the density matrices. However, the detailed
meaning of each of the parameters individually (apart from
a2, b2, and g2 which are essentially the local entropies of
the individual particles when the others are traced over) is
an important but open question.

In summary, we have shown how to calculate the num-
ber of functionally independent parameters needed to de-
termine whether or not two density matrices are locally
equivalent. We have also shown how to characterize the
generic classes of locally equivalent density matrices of
n spin-1�2 particles by two methods: (a) By finding an
explicit set of nonpolynomial invariants (the components
of the density matrices at the canonical points on the or-
bits) and (b) by finding an explicit finite set of polynomial
invariants. These methods work for generic density ma-
trices; in a future publication we intend to give a system-
atic method for characterizing classes of locally equivalent
nongeneric density matrices. In particular, this will give a
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basis for the ring of invariants. We note that the canonical
point on certain types of nongeneric orbit has a nontrivial
stability group; this is a signature that density matrices on
this orbit have special types of entanglement [9].
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