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Crystal Field Triplets: A New Route to Non-Fermi-Liquid Physics
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A model for crystal field triplet ground states of rare earth or actinide ions with dipolar and
quadrupolar couplings to conduction electrons is studied for the first time with renormalization grou
methods. The quadrupolar coupling leads to a new nontrivial, non-Fermi-liquid fixed point, which
survives in an intermediate valence Anderson model. The calculated magnetic susceptibility displa
one parameter scaling, going asT2a (a � 0.4) at intermediate temperatures, reminiscent of the non-
Fermi-liquid alloy UCu52xPdx .

PACS numbers: PACS numbers: 75.20.Hr, 71.10.Hf, 71.27.+a, 72.15.Qm
s
a-

m
in
in
ric

ble
st
tal
w

-

vior
-

ling
-
al
e
ble
ing,
xial
ate
the
s

lar

nd
ters

to
om
Recent data for many “heavy fermion” Ce or U base
compounds and alloys display diverging low-temperatu
magnetic susceptibilityx�T � � T2a and electronic spe-
cific heat coefficientsCel�T � g�T � � T2a or �2 ln�T �,
unlike those of a Fermi liquid [x�0� andg�0� constant]
[1]. A number of theoretical scenarios have arisen to e
plain this non-Fermi-liquid (NFL) physics, which broadly
fall into two categories:

(1) Localized.—including models associated with pe
culiar symmetry allowed interactions betweenf-electron
moments and conduction electrons [2–6] or a disord
induced distribution of Kondo scales [7,8]. Among th
first class of models, multichannel Kondo Hamiltonian
employing couplings between localized magnetic or o
bital doublets [induced by crystalline electric field (CEF
splittings] and conduction electrons have been extensive
studied [3–6].

(2) Extended.—in which the NFL behavior is driven
by coupling of electrons to low-lying modes induced b
intersitef-moment interactions in proximity to a quantum
critical point [9,10].

It is of considerable interest to sort out the applicabilit
of these differing scenarios to real materials. Of partic
lar interest is the alloy system UCu52xPdx [11] which dis-
plays NFL behavior in the range1 # x # 2.5 that has
been described in terms of localized disordered Kond
physics [7,8] or Griffiths’ phase theory [10]. This alloy
appears to display two separate NFL regimes as a fu
tion of temperature: (1) An “impurity” regime indepen-
dent of x for 80 # T # 300 K with x�T � � T21�3 and
x 00� �Q, v, T � � v21�3 for h̄v $ kBT (there appears to
be negligibleQ dependence tox 00) [12,13]. (2) A low
temperature “lattice” regime in whichx�T � � g�T � �
T2a�x� and for which some evidence exists for intersit
interaction effects [13]. The impurity regime data is no
compatible with any plausible multichannel Kondo mode
assuming ground state magnetic or orbital doublet leve
on the U ions. The picture is further complicated by ana
ysis of photoemission data which suggests the U ions a
in the mixed valent regime, possessing a nearly 50-50 m
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of ground state weight in thef3 and f2 configurations
[14]. This is problematic in that the Kondo effect ha
been conventionally studied only for nearly integral v
lent ions.

In this paper, we present a Kondo model for uraniu
ions with a CEF triplet ground state that is allowed
cubic symmetry. This model features an effective sp
1 local moment coupled via magnetic dipole and elect
quadrupole interactions to one band of effective spin 3�2
conduction electrons. The model displays a new sta
NFL fixed point (FP) at low temperatures which is robu
even in the mixed valent regime of the more fundamen
Anderson model. We find three different power-la
regions for the magnetic susceptibilityx�T �: a character-
istic T2a (a � 0.4) dependence in the intermediate tem
perature region over two decades, a Curie-Weiss lawT21

at higher temperatures, and a universal power-law beha
T22�3 at lower temperatures. Despite the differing tem
perature regimes, a surprising one parameter sca
emerges forx�T �. The quadrupolar coupling is demon
strated to be relevant using multiplicative and numeric
renormalization group (NRG) methods [6,15]. W
compare the FP properties with those of the unsta
FP reached in the absence of the quadrupolar coupl
and examine the FP structure in the presence of unia
symmetry breaking fields. We argue that the intermedi
and low temperature regimes may be relevant to
physics of UCu52xPdx . The model also possibly applie
to Pr, Tb, and Tm ions in some host metals.

Assuming a dominantly tetravalent (5f2) U ion for the
moment, the Hund’s rule ground state has total angu
momentumJ � 4, which is split into a quadrupolar (G3)
doublet, two magnetic triplets (G4,G5), and a singlet (G1)
under the action of the cubic CEF. The possible grou
states, which are accessed by varying the two parame
of the crystal field Hamiltonian, areG3, G5, or G1 [16]. As
argued elsewhere, theG3 ground state will give rise to the
two-channel quadrupolar Kondo effect upon coupling
conduction electrons [3,4,6]. The two channels arise fr
coupling to a local quartet (G8) of conduction electrons
© 1999 The American Physical Society 2421
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which may be described as a tensor product of states with
two magnetic labels and two orbital (G3) labels.

In the case of a G5 ground state, however, the f2 triplet
has both magnetic and quadrupolar moments, and can be
represented by a pseudospin S � 1. This can couple both
to the above mentioned G8 quartet of conduction electrons
and to the doublet channels (G6 or G7). For most plausible
crystal field situations we find, however, that the coupling
to the G8 quartet is larger. Representing the conduction
electrons as a single spin Sc � 3�2 manifold we obtain
the following Kondo model:

H �
X

km

´kc
y
kmckm 1

X

kk0mm0

c
y
k0m0ckm

3 �JD� �Sc�m0m ? �S 1 JQ� �Qc�m0m ? �Q� . (1)

Here m, m0 � 61�2, 63�2, and a potential scattering
term is neglected. The quadrupolar operators are given by
�Qi , i � 1, . . . , 5	 � �SySz 1 SzSy , SzSx 1 SxSz , SxSy 1

SySx , S2
x 2 S2

y , �2S2
z 2 S2

x 2 S2
y ��

p
3	. The conduction

electron with wave number k and pseudospin m has
kinetic energy ´k and is created (annihilated) by the
operator c

y
km (ckm). In the limit of small hybridization

between the conduction band and the f orbitals, this
Kondo Hamiltonian (1) can be directly derived from an
Anderson Hamiltonian where we restrict ourselves to the
valence fluctuation between the 5f1G7 and 5f2G5 states.
In this case, we obtain a coupling ratio JD�JQ � 2 and a
marginally irrelevant potential scattering with amplitude
JD . Our NRG calculations show that even including
the 5f3 configuration and extending the Anderson model
parameters to the mixed-valent regime, the Kondo model
(1) describes a stable FP [17]. Therefore, at low enough
temperatures, we can use this model to study the realistic
Kondo effect corresponding to this FP.

The relevance of the quadrupolar coupling JQ in
Eq. (1) can be immediately seen from a multiplicative
renormalization group procedure, valid in the weak cou-
pling regime. After a straightforward but lengthy calcu-
lation we derive the following RG equations:

djD�dx � �j2
D 1 12j2

Q� �1 2 5jD�

djQ�dx � 6jDjQ 2 36j3
Q 2 15j2

DjQ . (2)

Here x � ln�EF�v� denotes the scaling variable (with
EF , the Fermi energy, and v, the characteristic energy
scale), and we have introduced the dimensionless cou-
plings jQ � �0JQ and jD � �0JD with �0, the density
of states at the Fermi surface. The flow diagrams ob-
tained from a numerical solution of Eq. (2) are shown in
Fig. 1. In the absence of quadrupolar exchange the model
scales to the dipolar FP “D” at (jQ � 0, jD � 1�5). This
FP has been shown to be characterized by a critical expo-
nent D � 1�6 associated with its spin sector, which can
be mapped to the spin sector of the 10-channel Kondo
problem [18,19]. Obviously, this dipolar FP is unstable
2422
to quadrupolar perturbations and for any nonzero jQ it
flows to a new FP “S” at (jD � 1�5, jQ �

p
1�60).

At the FP “S” the ratio jQ�jD takes the value jQ�jD �p
5�12, and the interaction part of the Hamiltonian can be

written in the following pseudo-SU�3� invariant form:

Hint � J
X

kk0mm0

8X

i�1

lic
y
km�li

c�mm0ck0m0 , (3)

where the li ’s denote the 3 3 3 Gell-Mann matrices [20]
satisfying the SU�3� Lie algebra �li , lj� � 2ifijklk , and
can be easily expressed in terms of the spin one impurity
operators. The 4 3 4 matrices li

c are constructed from
the conduction electron spin operators Sc, and satisfy
a “pseudo-SU�3�” Lie algebra: �li

c, l
j
c� � 2ifijklk

c 1

octupolar terms. While these latter terms, which arise
from the commutators, spoil the SU�3� symmetry of the
local triplet, they cannot couple to the impurity, and are
hence irrelevant in the RG and general sense. Since both
the leading (second order) and next leading (third order)
logarithmic scaling equations result in the FP structure
of Eq. (3), we believe that this result is universal and
independent of the weak coupling approximation.

Unfortunately, the pseudosymmetry found is not strong
enough for the usual characterization of the FP by bound-
ary conformal field theory (CFT) [21]; in particular, it is
impossible to absorb the impurity spin in the conduction
electron currents without violating the Kac-Moody alge-
bra of the conduction electrons. However, we can study
the properties of the novel FP by using the NRG. Follow-
ing Wilson [15], we rewrite Eq. (1) as

HN11 � L1�2HN 1
X

m
�f

y
N11,mfNm 1 H.c.� ,

H0 � L21�2
X

mm0

X

T�S,Q

f
y
0,m0f0,m�J̃T � �Tc�m0m ? �T � , (4)

where H0 represents the effective exchange interaction on
the impurity site, f

y
Nm ( fNm) creates (annihilates) a conduc-

tion electron in the logarithmic discretized band, and J̃ �
2J�0��1 1 L21� with L, the discretization parameter.
We follow the usual procedure and iteratively diagonalize

FIG. 1. Scaling trajectories obtained from Eq. (2).
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FIG. 2. Finite-size spectrum extracted from the NRG spec-
trum, and NRG quantum numbers of the fixed points D and S
of Fig. 1. The energy E is measured in units of p�L (yF � 1
and L, the system size), which we identified from the exact
CFT solution at D. (D) For JQ � 0, each energy level is la-
beled by axial charge q and total spin j. (S) For JQ fi 0, q is
not a good quantum number since the charge SU�2� symmetry
is broken by the quadrupolar interaction.

HN11 to probe the system size on a scale of order
k21

F LN�2 and temperature of order TFL2N�2. In the NRG
calculations we exploited the full spin and axial charge
symmetry of the model, with the axial charge operator �q:
q1 �

P`
n�0�21�n� f

y
n,3�2f

y
n,23�2 2 f

y
n,1�2f

y
n,21�2�, and

qz � 1
2

P`
n�0

P
m� fy

nmfnm 2
1
2 �. These latter satisfy

�qz , q6� � 6q6 and �q1, q2� � 2qz [18]. Figure 2
shows the finite-size energy spectrum obtained at FP’s
“D” and “S” . The JQ � 0 spectrum in the sector with
dipolar coupling only (“D” ) coincides with the exact
CFT spectrum for the model of the impurity spin coupled
to spin 3�2 electrons [18]. In sector (S) we show the
finite size spectrum of the new fixed point obtained from
the NRG calculations. This should coincide with the
spectrum of a yet unknown boundary CFT. As easily
shown, the relevant quadrupolar coupling breaks the axial
charge SU�2� symmetry down to U�1�, while it conserves
that of the total spin j. Apart from some marginally
irrelevant trivial potential scattering that only induces a
phase shift, and can be easily subtracted, this symmetry
breaking is universal and cannot be described by a simple
phase shift: Some originally degenerate SU�2� axial
charge multiplets are split at the new FP “S” by some
quadrupolar charge operator, while others are split by a
dipolar charge operator.

To determine the dimension of the leading irrelevant
operator that governs the new FP, we carried out a finite-
size analysis of the NRG levels. Within the NRG scheme
the finite-size energy 1�L corresponds to �L2N�2 and the
levels relax to their FP values as

ENRG 2 E� ~ L2DN�2, (5)
where E� is the FP energy and D denotes the scaling
dimension of the leading irrelevant operator [22]. For
JQ fi 0 almost the same energy level relaxation is found
as for JQ � 0 over the whole parameter space of Fig. 1, in
agreement with an exponent D � 1�6 (see Fig. 3). This
implies that x�T � � g�T � � T2D21 � T22�3 at low T .

To determine the impurity susceptibility x�T � we
calculated the temperature dependent magnetization
induced by a small local field at the impurity site. The
resulting curves are plotted in Fig. 3. Each curve has
an interesting region where it behaves like T2a over
approximately two decades, and 1�3 , a � 0.4 , 2�3
slightly depending on the magnitude of the Kondo
couplings. After adjusting the overall scale of x�T �,
as shown in Fig. 3, we can scale all x�T � data on a
single universal curve using a single temperature scale
T� (though strong coupling induces some deviations
from scaling at higher temperatures—see the discussion
below). This one parameter scaling, also observed in
the quadrupolar susceptibility [17], strongly suggests that
the intermediate temperature regime behavior reflects the
new low temperature FP rather than some unstable FP,
similarly to the universal single channel Kondo suscepti-
bility in the regime T . TK . For small to intermediate
Kondo couplings, J̃Q , J̃D & 0.5, x behaves according to
the Curie-Weiss law T2a (a � 1) at large temperatures.
For smaller temperatures an intermediate region appears

FIG. 3. Magnetic susceptibility: (Top) From top to bottom,
the couplings are 4J̃D � 8J̃Q � 0.5, 0.7, 1.0, 2.0, 4.0, and
8.0. (Bottom) Rescaled magnetic susceptibility. All the data
collapse to a universal curve. Inset: Relaxation of NRG
levels near to the fixed points. The initial couplings were
J̃D � J̃Q � 0.1 (crosses) and J̃D � 1.0 and J̃Q � 0 (circles).
For comparison, data for the two-channel Kondo fixed point are
also given (triangles), scaling as L2N�4 with L � 3.
2423
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where a � 0.4. As the temperature decreases further,
x�T � turns up and behaves as �T22�3 in the vicinity of
the novel FP. For larger couplings the Curie-Weiss part
is absent, and x starts as �T21�3 at high temperatures
and then the exponent a gradually goes up to 2�3 at
low T . The appearance of the intermediate region with
x�T � � T2a (a � 0.4) is specific to nonzero quadrupo-
lar coupling JQ . When JQ � 0, the dipolar coupling
JD gives only monotonic behavior T21 ! T22�3 with
decreasing temperatures. This is also a clear difference
between the Kondo effect for local triplet and doublet
states.

Finally, we discuss the stability of the novel FP against
a uniaxial (tetragonal) lattice distortion. The distortion
lifts the triplet degeneracy, giving either a singlet or
doublet ground state split by a value hQ , and destabilizes
the novel triplet FP. Instead, we have two possible
stable FP’s: when the singlet lies lowest, a Fermi liquid
FP arises, and a ground doublet experiences a NFL FP,
associated with the two-channel quadrupolar Kondo effect
for tetragonal symmetry [4]. According to our NRG
calculation, the crossover temperature below which the
system flows away from the cubic FP to one of the
above two varies as h2

Q for a small distortion [17]. This
power implies that the operator with j � 2 corresponding
to lattice distortions has the same scaling dimension
1�2 at “S” as at the unstable FP “D” of Fig. 1. The
two tetragonal FP’s are separated by a boundary line
in coupling space on which the novel cubic FP resides.
The features associated with this cubic symmetric FP are
expected to appear in some U-based compounds with
uniaxial anisotropy close to this boundary, too.

In conclusion, we investigated a new Kondo Hamil-
tonian describing the dynamics of a local triplet. The
quadrupolar exchange interaction drives the model to a
new fixed point, characterized by a universal charge SU�2�
symmetry breaking, a leading irrelevant operator with di-
mension D � 1�6, and a pseudo-SU�3� symmetry. For
small and intermediate couplings the magnetic susceptibil-
ity is universal and has an intermediate temperature range,
where it scales as x � T2a with a � 0.4. In the strong
coupling case this reduces to a power with a � 1�3. Since
the extreme mixed valence of UCu52xPdx suggested by
photoemission is compatible with a strong coupling limit
of the Kondo model, we suggest that the intermediate
temperature range susceptibility may correspond to the im-
purity range identified for this material [12]. While this
material is strongly disordered [8], our estimations show
that a considerable fraction of the U ions has a perfect
local surrounding, and for these the crossover temperature
generated can easily be below the lower limit of the uni-
versal scaling observed (�20 K). The surprising increase
of the power law at lower temperatures will give the con-
centrated system a greater tendency towards intersite inter-
action effects, qualitatively compatible with the suggested
2424
interaction driven low temperature physics. To test the
idea further, we strongly urge an experimental study of
this system with uranium diluted away by thorium. The
model may prove relevant to the alloy Y12xUxPd3 as well
[23]. Triplet ground states have been identified in the con-
centrated Pr (4f2) compounds PrPd3 [24] and PrB6 [25],
so that dilution of Pr by La would be an important experi-
mental study. Dilute Pr in Pd [26] shows unambiguous
Kondo behavior, but the existing data do not resolve the
relevance of our model for this system.

We thank J. W. Allen, D. E. MacLaughlin, and
M. B. Maple for useful discussions. This research
has been supported by NSF DMR 95-28535, the
U.S.–Hungarian Joint Fund No. 587, and Grant No. DE-
FG03-97ER45640 of the U.S. DOE Office of Science,
Division of Materials Research. M. K. has been sup-
ported by JSPS and G. Z. by Hungarian Grants OTKA
No. T026327 and No. F030041.

[1] O. Sakai, in Physics of Strongly Correlated Electron
Systems, Japanese Journal of Applied Physics Series,
edited by T. Komatsubara et al. (Komiyama, Tokyo,
1999), Vol. 11, p. 141.

[2] P. Nozières and A. Blandin, J. Phys. (Paris) 41, 193
(1980).

[3] D. L. Cox, Phys. Rev. Lett. 59, 1240 (1987).
[4] M. Koga and H. Shiba, J. Phys. Soc. Jpn. 64, 4345 (1995).
[5] Y. Shimizu et al., J. Phys. Soc. Jpn. 67, 2395 (1998).
[6] For a review, see D. L. Cox and A. Zawadowski, Adv.

Phys. 47, 599 (1998), and references therein.
[7] E. Miranda et al., Phys. Rev. Lett. 78, 290 (1997).
[8] O. O. Bernal et al., Phys. Rev. Lett. 75, 2023 (1995).
[9] A. J. Millis, Phys. Rev. B 48, 7183 (1993).

[10] A. H. Castro Neto et al., Phys. Rev. Lett. 81, 3531 (1998).
[11] M. C. de Andrade et al., Phys. Rev. Lett. 81, 5620 (1998).
[12] M. C. Aronson et al., Europhys. Lett. 40, 245 (1997).
[13] R. Chau et al. (to be published).
[14] J. W. Allen (private communication).
[15] K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).
[16] K. K. Lea et al., J. Phys. Chem. Solids 23, 1381 (1962).
[17] M. Koga, D. L. Cox, and G. Zaránd (to be published).
[18] T.-S. Kim et al., Phys. Rev. B 55, 12 460 (1997).
[19] M. Fabrizio and G. Zaránd, Phys. Rev. B 54, 10 008

(1996); A. Sengupta and Y. B. Kim, ibid. 54, 14 918
(1997).

[20] C. Itzykson and J.-B. Zuber, Quantum Field Theory
(McGraw-Hill, New York, 1980), p. 516.

[21] I. Affleck, Nucl. Phys. B336, 517 (1990); I. Affleck and
A. W. W. Ludwig, ibid. 352, 849 (1991).

[22] J. von Delft et al., Phys. Rev. Lett. 81, 196 (1998).
[23] P. Dai et al., Phys. Rev. Lett. 75, 1202 (1995); M. J. Bull

et al., Phys. Rev. B 57, 3850 (1998).
[24] J. M. M. da Silva, Solid State Commun. 28, 857 (1978).
[25] A. Tamaki et al., J. Magn. Magn. Mater. 52, 257 (1985).
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