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We study the formation of stripe order within the SO(5) theory of high-Tc superconductivity.
Spin and charge modulations arise as a result of the competition between a local tendency to
separate and the long-range Coulomb interaction. This frustrated phase separation leads to ho
and hole-poor regions which are, respectively, superconducting and antiferromagnetic. A rich v
of microstructures ranging from droplet and striped to inverted-droplet phases are stabilized, depe
on the charge carrier concentration. We show that the SO(5) energy functional favors nontopol
stripes.
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One of the most striking features of the cuprate
is the proximity between antiferromagnetic (AF) and
superconducting (SC) phases as a function of dopin
Recently it has been proposed that these two phas
are unified by an approximate SO(5) symmetry [1]. A
number of experimental consequences of this theory ha
been worked out [2–6]. Although SO(5) appears t
be a natural framework for understanding the cuprate
no experiment has unequivocally tested the fundamen
validity of the theory. One of its most direct predictions
is the existence of a first-order transition from the AF t
SC state as the chemical potentialm is increased beyond
a critical value. However, this prediction is complicated
by the fact that the dopingx (not m) is the experimentally
tunable parameter. Experimentally, it is found that in th
vicinity of the AF-SC transition, the cuprates show a
increased sensitivity to disorder and inhomogeneity.
this Letter, we study this region of the phase diagra
in the presence of the long-range Coulomb interactio
within the SO(5) formalism and show how spatially
inhomogeneous states can emerge.

In the T 2 m phase diagram of SO(5) theory, there i
a first-order line separating the AF and SC phases, acro
which the charge carrier densityx jumps discontinuously.
In the T 2 x phase diagram, this translates into a two
phase region where AF and SC phases coexist. Ph
separation into hole-rich and hole-poor regions was al
noticed in studies of thet-J model [7,8]. However, as
Emery and Kivelson [9] argued rather successfully, th
long-range Coulomb interaction between charge carrie
prevents macroscopic phase separation. The competit
between the local tendency toward phase separation a
the long-range Coulomb interaction leads to modulate
domain structures at mesoscopic scales [10–13].
the SO(5) theory, the hole-rich and hole-poor region
are, respectively, identified as having a superconducti
and antiferromagnetic character. The spin and char
modulations of the system are interpreted as textures
the SO(5) superspin as it rotates in SO(5) space.
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There is considerable evidence for modulated m
crostructure in the oxides. Domain formation has been
ported in La22xSrxCuO4 (LSCO) in muon spin resonance
[14], NMR, and neutron diffraction experiments [15]
Neutron scattering measurements in La1.62xNd0.4SrxCuO4
(LNSCO) provide direct evidence for stripe ordering i
which the phase of the AF order shifts byp across a
domain wall [16]. Furthermore, recent inelastic neutro
scattering measurements in underdoped YBa2Cu3O72x

[17] and angle-resolved photoemission spectrosco
(ARPES) measurements in underdoped Bi2Sr2CaCu2O82x

(BSCCO) [18] are not inconsistent with a striped pha
interpretation.

In the mean field approximation of the SO(5) theor
one minimizes the classical energy

H1�na, pa� �
1
4

X
ab

L2
ab

xab
1 g�n2

1 1 n2
5�

1
rs

2
�= �n�2 1 Ec (1)

with Lab � napb 2 nbpa and constraints n2
a � 1,

napa � 0. Lab and �n refer, respectively, to the SO(5)
generators of rotation and the five-component supers
�n � ���Re�D�, Nx , Ny , Nz , Im�D���� [1]. The last termEc

is the Coulomb energy. Since, in SO(5) theory, th
hole density is given byL15, the charge density is
r�r� � L15�r� 2 ex, where ex is the charge of the
neutralizing counterion charges which are assumed to
static and homogeneously distributed with a densityx.
We conjecture then that, if SO(5) theory is still valid in
the presence of the long-range Coulomb interaction [1
the Coulomb energy in the mean field approximation w
be given by

Ec �
1
2

Z Z
r�r�VC�r 2 r 0�r�r 0� dr dr 0. (2)

It is important to emphasize that for homogeneou
phases one recovers the basic SO(5) model because
© 1999 The American Physical Society 2413
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charge density vanishes exactly making the Coulomb in-
teraction irrelevant. Hence the influence of the Coulomb
term arises solely in the phase separation regime. Second,
the assumption of immobile static counterions is known
to fail for La2CuO41d [20]. In this case, the oxygen ions
are mobile enough to screen the charge inhomogeneities
which leads to macroscopic phase separation of super-
conducting and antiferromagnetic domains. This last fact
provides strong evidence for the correctness of the SO(5)
picture.

It can be proved that if H1 is symmetric with
respect to rotations within AF and SC subspaces
(x15 � xs, x23 � x34 � x24 � xa, x12 � x13 �
x14 � x23 � x24 � xp ), the minimal configuration
has a form �n � �n1, n2, 0, 0, 0� � �cosu, sinu, 0, 0, 0�,
�p � �0, 0, 0, 0, p5� and the constraints are automatically
satisfied if we use the variables �u, p5�.

With the addition of the long-range Coulomb inter-
action to the Hamiltonian, the behavior of the system
is no longer tractable analytically and one must resort
to numerical analysis. We note that a classical spin
Hamiltonian

H2 � J
X
�i,j�

�Si ? �Sj 2 2K
X

i

�Sz
i �2 (3)

can be transformed into the local part of H1 by a Haldane
map (see [21] for details). Here J . 0 and K . 0
are known functions of xab , g, rs. To match the whole
expression (1) we add a term

V �
1
2

X
i,j

�Sz
i 2 x� �Sz

j 2 x�
ej�ri 2 �rjj

, (4)

where e is the dielectric constant of the material.
As emphasized earlier, since experiments are performed

at constant carrier concentration, the Hamiltonian E �
H2 1 V is subject to the doping constraint �Sz� � x.
Numerically it is easier to study E than H1 because the
hole density is given explicitly by Sz rather than implicitly
by L15. The properties of E are studied using Monte
Carlo simulations. In order to find the lowest energy state
of the system, we perform simulated annealing from high
temperature. We assume an N 3 N two-dimensional
lattice where N can be up to 40 unit cells.

In the absence of the long-range Coulomb interaction,
one can easily show that the system phase separates for
densities x less than xc � K��2J 2 K�. The addition of
the Coulomb term leads to a rich variety of modulated
structures, which are shown on the phase diagram of
Fig. 1. For large dielectric constant, three phases are
found to be stabilized: a droplet phase made of SC
droplets embedded in an AF background, a striped phase
of alternating SC and AF stripes, and an inverted-droplet
phase where the droplets are antiferromagnetic. Our
numerical solutions (Fig. 2) show that the superspin stays
in the AF or SC directions inside the domains and changes
only in the thin domain walls. The structure represents a
collection of solitons rather than a small modulation of
2414
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FIG. 1. Phase diagram as a function of strength of the
Coulomb interaction 1�e and the hole density x for K � 0.4
and J � 1 which gives xc � 0.5.

the direction of �n. The superconducting density switches
between 0 and xc in AF and SC domains which means that
the superconducting area fraction Asc�A � x�xc leading
to a linear relation between the superfluid density and
the doping as seen in some experiments [22]. A simple
physical argument for the pattern shape can be given in
terms of interface energy [23]. As long as one of the
phases (AF or SC) is in the minority, the energy of the
AF-SC interface dominates over the Coulomb energy and
circular domains are preferred as they minimize the length
of this interface. However, the situation is reversed for
x � xc�2 where the repulsive interaction leads to dipole
formation which favors elongated domains such as stripes.

The striped phase is reminiscent of the domain structure
observed in LNSCO, though the rows of charge are
superconducting in our model. It is interesting to consider
the superspin texture in the striped phases, namely, the
relative phase shift of every other stripe. Numerically,
it is found that the lowest energy states do not show any
winding of the superspin in space. Hence, the phase of the
AF order parameter does not shift by p on crossing a SC
stripe. The same results were obtained for a simulation
on a spin ladder where all configurations are necessarily
one dimensional.

This absence of topological phase shift is in striking
contrast to experimental data [16]; however, it can be
proved analytically for the minimal periodic 1D configu-
ration of (1) using the theorem of Pryadko et al. [24].

Theorem: For a functional

E �
Z √

dy

dr

!2

1 Eloc���y2�r�, r��� dr

1
Z Z

r���y2�r�, r���V �r 2 r 0�r���y2�r 0�, r 0��� dr dr 0

(5)

of the function of one argument y�r� the minimal configu-
ration under a constraint

R
r���y2�r�, r��� dr � 0 does not

cross zero.



VOLUME 83, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 20 SEPTEMBER 1999
FIG. 2. Geometric phases as a function of doping: Hole
density profile for the (a) droplet phase (x � 0.12), (b) striped
phase (x � 0.24), and (c) inverted-droplet phase x � 0.35.
The parameters chosen are J � 1, K � 0.4, and e � 6.

Applying it to (1) we note that as a function of u both r

and H1 can be expanded in even powers around the points
u � 0, p and thus umin�r� cannot cross these levels. In
addition, let us perform a variable change �u, p5� !
�u, q � p5� cosu�. Its Jacobian is sometimes infinite, but
not on the minimal solution for which minimization of H1
with respect to p5 gives

pmin
5 �

2 cosu
cos2u�xs 1 sin2u�xp

Z
VC�r 2 r 0�r�r 0� dr 0.

(6)

After the variable change H1�u, q� can also be expanded
in even powers around the points u � p�2, 3p�2, so
the minimal solution does not cross these levels either.
Altogether, umin�r� always stays in one of the four
quadrants of the circle. For low dielectric constant, i.e.,
weak screening, we find that phase separation is precluded
altogether. The system exhibits a homogeneous mixed
phase in which the superspin points neither in the purely
AF nor SC direction. This state is reminiscent of the
putative supersolid phase in 4He as both order parameters
(AF and SC) are nonzero everywhere in the sample.

After the minimum of E is found, the chemical poten-
tial can be numerically calculated as m � ≠E�≠x. As
shown in Fig. 3, m�x� becomes nonmonotonic and a re-
gion of dm�dx , 0 appears. Such a region is prohibited
in thermodynamics, but in models with continuous charge
density (as opposed to point charges) it is generic. The
origin of the region in which the chemical potential is
double valued is illustrated by Fig. 4. In the absence of
Coulomb interactions and gradients the energy of a mix-
ture with doping xmin , x , xmax interpolates linearly be-
tween Emin and Emax. The effect of Coulomb interactions
and gradients is to increase the total energy of these inter-
mediate states to Etot�x� as shown in Fig. 4. The depen-
dence of m on x is then given simply by m � dEtot�dx,
which is consistent with the numerical results of Fig. 3.

Because Etot�xmin,max� � Emin,max in models with con-
tinuous charge one hasZ xmax

xmin

���m�x� 2 mc��� dx � 0 , (7)

which applies beyond the SO(5) theory. Our numerical
results are consistent with (7).

Experimentally, investigations of the chemical shifts
in LSCO [25] and BSCCO [26] have shown that while
the shift is large in overdoped samples, it is strongly
suppressed and pinned in underdoped samples, in agree-
ment with the phase separation picture. However, due
to poor experimental resolution, it is not possible to as-
certain the nonmonotonic behavior of m�x�. More ex-
perimental work is needed to test this prediction of our
model. While this work was motivated by experiment, it
should be emphasized that extensions of our model would
be needed to make real contact with experiments. The lat-
tice anisotropy of the cuprates will lead to an anisotropic

FIG. 3. x versus m curve for three different values of e, for
parameters J � 1 and K � 0.4 which yield xc � 0.5. The
curves e � 0 (homogeneous) and e � ` (phase separation) are
obtained from the analytic solution of Eq. (3). The circles are
the data of the numerical solutions for e � 20.
2415



VOLUME 83, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 20 SEPTEMBER 1999
FIG. 4. State energy as a function of x: In the phase
separation regime, the energy becomes a convex function
of x.

AF-SC interface energy. We expect this anisotropy to en-
large the region of striped phase stability relative to that of
the droplet phases, as the former can take best advantage
of that anisotropy. Also, disorder will make the coeffi-
cients J and K (or xab and g) and the charge of the coun-
terions position dependent. Although the resulting effects
are complex in character, we may speculate that for small
disorder, the defects act as pinning centers for the stripes
and lead to distortions of the domain structure as well as
a loss of long-range order. This may explain the failure
to observe droplet phases in the high-Tc superconductors.
For strong randomness, the size of the domains would
be predominantly set by the disorder instead of the long-
range interactions [27,28]. However, we expect that the
linear relation between the superfluid density and the dop-
ing should still hold in these glassy materials.

In summary, we have shown that the interplay between
the long-range Coulomb interaction and the local ten-
dency to phase separation of the SO(5) model leads to
an interesting and remarkably rich phase diagram for the
clean system. We found that the frustrated phase separa-
tion between hole-rich and hole-poor regions can provide
an explanation for the gross features of the cuprates near
the AF-SC transition when lattice anisotropy and impu-
rity effects are taken into account. However, the SO(5)
energy functional cannot have topological solutions as its
lowest energy state. Therefore we believe that the topo-
logical nature of stripes that are observed in experiment
must arise from microscopic properties of the coexisting
states. Finally, we draw attention to the behavior of the
chemical potential in the phase separation regime.
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Demler and Shoucheng Zhang. This work was partially
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Research, and by Materials and Manufacturing Ontario.
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