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We demonstrate the existence ofintrinsic gap states in bare and capped semiconductor nanocrys
within multiband effective mass theory. These states originate from Shockley-like surface states w
in small nanocrystals, extend over the entire crystal volume, facilitating their observation in absor
as well as in photoluminescence. The conditions under which such intrinsic states might be obs
are discussed in light of the theory developed and analysis of the band parameters of direc
semiconductors.

PACS numbers: 73.20.Dx, 71.24.+q, 78.66.–w
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The optical properties of nanosize semiconductor cry
tals have attracted much attention because of their poten
applications and their fundamental interest [1–3]. The
optical properties usually arise from transitions betwe
the quantum size levels of the conduction bands (CB) a
valence bands (VB). We describe a new class ofintrinsic
nanocrystal (NC) states within the multiband effectiv
mass approximation whose energy is size dependent
which lie between the bulk conduction and valence ba
edges—they areintrinsic gap states (GS). By intrinsic we
mean that these states are not associated with point
fects such as impurities, or with surface dangling bond
but rather occur in NCs with perfectly passivated surfac
or interfaces as in Shockley’s model of surface states [
These electronic states could play an important role
the photoabsorption and photoluminescence (PL) of NC
Similar types of intrinsic gap states, i.e., whose energy d
pends on the bulk properties of the semiconductors, ha
been experimentally observed in the energy spectra of
tical phonons [5] and excitons [6] in semiconductor NC
(so-called surface phonons and surface excitons). El
tronic gap states of the type we describe have not yet b
observed experimentally; in this paper we analyze the co
ditions under which they might be found.

The conditions for the existence of an intrinsic GS a
intimately connected with the character of the surface (f
the case of bare NCs) or the heterointerface (for the c
of capped NCs). In the effective mass approximatio
interfaces are characterized through boundary conditio
(BCs). While the choice of BCs within effective mas
theory is somewhat arbitrary, general BCs have been
veloped for planar heterointerfaces [7], but more com
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monly the wave function and the normal component of th
probability current are required to be continuous (“con
ventional” BCs) [7,8]. Zhu and Kroemer, however, using
a tight-binding approximation, showed that, generally, th
conventional matching conditions at a planar heterointe
face should be modified by inclusion of an interface delta
function potential, which under certain conditions can giv
rise to interface states. Only for so-called “normal” het
erojunctions, where the interface transfer matrix eleme
equals the geometric mean of the nearest-neighbor tra
fer matrix elements associated with the two respective bu
semiconductors, do the conventional BCs apply [9].

In this paper we present a theoretical study of intrins
gap states in bare and capped spherical NCs of zinc blen
semiconductors. Using the eight-band Pidgeon and Brow
model (PB) [10] to describe the Hamiltonian of the bulk
material, we demonstrate that the useeven of conventional
BCs leads to three distinct types of intrinsic GSs within
the effective mass approximation. The first two arise i
heterostructure NCs with abrupt changes in the ener
band parameters across the interface, while the third m
exist in bare NCs of specific materials, e.g., InP or CdS.

The PB model simultaneously takes the coupling of th
conduction and valence bands into account exactly a
the contribution of remote bands to the effective mass
of the electrons and holes in second-order perturbati
theory. This model successfully describes the comple
band structure around theG point of the Brillouin zone
of semiconductors having cubic lattice symmetry. In th
limit of zero spin-orbit coupling,D � 0, and assuming
spherical symmetry, this Hamiltonian is represented in th
Bloch function basisjS�, jX�, jY �, jZ� as
ĤPB �
h̄2
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Here, k̂x,y,x � 2i≠�≠x,y,z , k̂2
�,i � k̂2 2 k̂2

i , P �
22i�Sjp̂zjZ��h̄, Eg � h̄2´g�2m0 is the energy gap,
bl � g1 1 4g, and bh � g1 2 2g are the contribution
of remote bands to the effective masses of the light and
heavy holes, written in terms of “modified” Luttinger
parameters g1 � g

L
1 2 Ep�3Eg, g � gL 2 Ep�6Eg,

where Ep � h̄2P2�2m0 [10]. The inverse of the electron
effective mass, mc, at the bottom of the conduction band
can be expressed m21

c � m21
0 �a 1 Ep�Eg�.

In this approach, each electron and hole state in spheri-
cal NCs is characterized by its parity and total angular
momentum F � J 1 L, where J is the Bloch band-edge
angular momentum (0 for the conduction band; 1 for the
valence bands) and L is the envelope angular momentum.
The corresponding wave functions can be expressed [11]

CF,Fz �r� �
X
J,L

R
F,J
L �r� jF,Fz; J,L� , (2)

where jF,Fz; J ,L� are eigenstates of the total angular
momentum [11]. With the spherical PB Hamiltonian, we
then obtain two sets (one for each parity) of second-order
differential equations for the radial functions R

F,J
L �r�:

�´g 2 ´ 2 aDF�RF,0
F 2 a2

F PA1
F21R

F,1
F21 2

a1
F PA2

F11R
F,1
F11 � 0 ,

2a2
F PA2

FR
F,0
F 1 �D2

F 2 ´�RF,1
F21 2 bFgA22

F11R
F,1
F11 � 0 ,

(3)

2a1
F PA1

FR
F,0
F 2 bFgA12

F21R
F,1
F21 1 �D1

F 2 ´�RF,1
F11 � 0 ,
where a6
F �

p
�1 6 dF��2, bF � 3

p
1 2 d2

F , c6
F � 1 6

3dF, and dF � 1��2F 1 1�, the raising and lowering
operators A1

l � 2
≠
≠r 1

l
r , A2

l � ≠
≠r 1

l11
r , and the ra-

dial Laplacian Dl � ≠2

≠2r 1
2
r

≠
≠r 2

l�l11�
r2 , D6

F � �g1 1

c6
F g�DF61, and A62

l � A6
l61A

6
l . This equation is valid

for F $ 0. The second equation,

��g1 2 2g�DF 2 ´�RF,1
F � 0 , (4)

is valid for F $ 1.
Equations (3) and (4) were derived for a homogeneous

semiconductor. In heterostructures with abrupt heteroin-
terfaces, a general solution to Eqs. (3) and (4) can be
found in each homogeneous region separately and the
total wave function determined by imposing appropriate
BCs. In spherical NCs, the simplest form of the con-
ventional BCs reduces to continuity of each component,
R

F,J
L , of the radial envelope wave function, Eq. (2), and

continuity of the normal component of the velocity at the
heterointerface:

�n ? V̂�CF,Fz �r�jr�a2 � �n ? V̂�CF,Fz �r�jr�a1 , (5)

where n � r�r and V̂ � 1
h̄=kĤ�k�. The radial veloc-

ity operator may be represented in a basis of eigenstates
of total angular momentum, jF,Fz; J,L�, by using the fa-
miliar rules for angular momentum addition and integrat-
ing over angular variables. For the states corresponding
to Eq. (3),
�n ? V̂�CF,Fz �r� � 2i

0
BB@
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P
2 R

F,1
F21 2 a1

F
P
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F11

2a2
F

P
2 R
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F 1 B2

FR
F,1
F21 2 bFgA2

F11R
F,1
F11

a1
F

P
2 R

F,0
F 1 bFgA1

F21R
F,1
F21 1 B1

F R
F,1
F11

1
CCA , (6)
where B6
F � �g1 2 2c6

F g�dr 1
3
2c

6
F g�A2

F61 2 A1
F61�.

Each component of this array is required to be continuous
at the heterointerface. For the other parity the equation
for the normal component of the velocity is

�n ? V̂�CF,Fz �r�
2i

�

∑
�g1 2 2g�

≠

≠r
2 3

g

r

∏
R

F,1
F . (7)

Together, Eqs. (3), (4), (6), and (7) completely describe
the electronic structure of quantum size levels in spherical
NCs within the eight-band effective mass model. We will
now show three cases where GSs exist as solutions of these
equations. We begin with the simplest case of the single-
component heavy-hole states in capped NCs, which are
described by Eqs. (4) and (7). Analysis of these equations
shows that GSs exist for sufficiently large discontinuity in
the parameter g across the interointerface at r � a:

bi
h

≠rR
F,1
F

R
F,1
F

Ç
r�a2

2bo
h

≠rR
F,1
F

R
F,1
F

Ç
r�a1

� 3
gi 2 go

a
. (8)

The right side of this equation, which represents a dis-
continuity in the mass-weighted normal derivatives of the
radial wave functions, can be interpreted as the effect of
an attractive delta-function potential at the interface (see
Ref. [9]) which arises from terms of d symmetry in the
Hamiltonian, Eq. (1). In the present context, the strength
of the potential is proportional to gi 2 go and inversely
proportional to the NC radius, leading to GSs in finite size
NCs if gi . go . This situation is exemplified by CdS
NCs embedded in HgS (Fig. 1). This system constitutes
an “antidot” since the band gap of the CdS core exceeds
that of the HgS matrix in which it is embedded. The size
dependence of the F � 1 level, calculated using the pa-
rameters of Ref. [12], is shown for this system in Fig. 1.
The state starts from the top of the valence band of HgS for
large CdS antidot core radii and enters the gap as the core
radius decreases. The wave functions decay evanescently
from the interface [see Fig. 1(b)], exhibiting a cusp which
is connected with the discontinuity of the radial deriva-
tives, a feature which is essential for the existence of GSs.

Analysis of Eqs. (3) and (6) shows that GSs usually do
not exist in capped NCs described by the conventional
BCs because the effective mass parameters for the con-
stituent materials in standard heterojunctions are close to
2395
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FIG. 1. Pure heavy-hole gap state in antidot CdS�HgS NCs:
(a) size dependence of the energy for the F � 1 state. Inset:
schematic of the band diagram (Eg for HgS is taken to
be 200 meV following Ref. [13]); (b) size dependence of
the radial wave function in antidots with radii, a, of 5
and 10 nm.
2396
each other. However, for some heterojunction systems the
parameters a, b have opposite signs across the heterointer-
face. As a result, in these systems the radial derivatives
must have opposite signs across the heterointerface, conse-
quently leading to a cusp in the wave function and thus the
possibility of a second type of GS. However, these states
are highly localized near the heterointerface; thus these re-
sults are outside the range where the effective mass ap-
proximation can be applied. A quantitative treatment of
these states would require analysis within ab initio atom-
istic models.

A third type of GS, which emerges from the coupling
between the conduction and valence bands, can exist
in bare NCs within the effective mass model. In bare
NCs, the surface is conventionally described by an infinite
barrier. Description of these states proceeds from Eq. (3)
with the BC that all components of the radial wave function
vanish at the NC surface, r � a. The resulting dispersion
relation which describes the size dependence of the energy
levels has the form [13]
jF11�k2a�jF21�kha� 1
F

F11jF11�kha�jF21�k2a� �
a

jaj

q
a

bl

´1blk2
2

Pk2
jF�k2a� � jF21�kha� 2

FjF11�kha�
F11 � , (9)
where k2
h � ´�bh and k2

2 � ´�´ 2 ´g��P2. Equa-
tion (9) describes the quantum size levels in the conduc-
tion band, when ´ . ´g, and in the valence band, when
´ , 0. However, they also have solutions when the
energy 0 , ´ , ´g. In this case k2

2 and k2
h are negative,

corresponding to evanescently decaying wave functions.
It is easy to find solutions for these equations in the limit

of large radius a where jk2ja ¿ 1, jkhja ¿ 1. In this
case, using asymptotic expressions for the spherical Bessel
functions of imaginary argument, Eq. (9) becomes

1 � 2
a

jaj

r
a

bl

´ 1 blk2
2

Pjk2j
. (10)

This equation has solutions only if the contribution of
remote bands to the electron and hole effective masses
are both negative: a , 0, bl , 0 . For large a, the GS
energy ´s � bl´g��bl 1 a� is independent of the angular
momentum F.

InP is one material which satisfies this condition. The
size dependence of the resulting intrinsic GSs, calculated
for different angular momenta, F, is shown in Fig. 2(a)
together with the size dependence of the lowest hole and
electron levels. Calculations were done for InP NCs with
Eg � 1.424 eV, Ep � 20.6 eV, a � 21.2, g1 � 0.41,
and g � 20.51 [14], and assuming D � 0. All GSs start
from the same energy ´s at large radii and fan out into
the band gap with decreasing size according to their par-
ticular angular momenta. In Fig. 2(b) we show the size
dependence of the radial wave functions of the F � 1 GS
for NCs with radii 8, 4, and 2 nm, whose energy is ap-
proximately the same. In large NCs the GS is localized
near the surface while it becomes increasingly extended
over the entire internal volume of the NC with decreasing
NC radius. However, these radial wave functions decay
to zero near the surface within a length on the order of the
unit cell. This is because the wave functions contain ap-
preciable admixture of the complex “wing-band” compo-
nents with wave vector modulus 	P2�ab, lying outside
the first Brillouin zone, and which consequently do not de-
scribe physical states as discussed in Ref. [15]. As shown
in Refs. [13,15], the contribution of these wing-band states
can be removed by taking the limit a, b ! 0, which re-
sults in a modified boundary condition in which the wave

FIG. 2. GSs in bare InP NCs. (a) Size dependence of the gap
states with various angular momenta (F � 0, . . . , 5) and the
lowest quantum levels in the conduction (F � 0) and valence
(F � 1, parity p � 61) bands. The band states as well as GSs
which are active in band-edge transitions are indicated by solid
lines while other GSs are shown with dotted lines. (b) Size
dependence of the radial F � 1 gap state wave functions: R

1,1
0 ,

R
1,1
2 , and R

1,0
1 are indicated by dotted, dashed, and solid lines,

respectively, for three different size NCs.
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FIG. 3. The size dependence of the transition energy (a) and
average squared transition dipole (b) of the band edge and GS
transitions. In (b) the transition dipole is plotted in units of the
interband matrix element P2

cy � j�sj p̂z jz�j2. The inset shows
a schematic of the optically allowed transitions. The bold
line describes the lowest energy band-to-band transition; the
plain solid line indicates the transition between the CB and the
F � 1 GS; the dashed and dotted lines correspond to transitions
between GSs and the VB as identified in the schematic.

function is not required to vanish at the NC surface [13].
Consequently, until a more rigorous procedure for han-
dling the NC surface is developed, the present description
of these states must be regarded cautiously.

An important question therefore is: How would such
states manifest themselves experimentally? Figure 3
shows the size dependence of the energy (a) and os-
cillator strengths (b) of the dipole allowed transitions
(DF � 0, 61) between the lowest energy electron and
hole quantum size levels and gap states in InP NCs (see
inset). The bold line describes the band-to-band transi-
tion. The thin solid line corresponds to the transition from
the F � 1 GS to the CB. The transition dipole element
of this transition is larger than that of the band-to-band
transition in small NCs, which would make this transition
active even in absorption measurements. The transitions
between the GSs and the hole levels (dashed and dotted
lines) are much weaker. As a result, it is possible that
the absorption band edge and PL in small NCs could be
determined by GS-CB quantum size level transitions.

Analysis of the band parameters shows that this type of
intrinsic GS may occur in bare InP or CdS NCs. Bare CdS
NCs do show deep lines in their PL [16] which were in-
terpreted as deep impurity transitions to the CB. In InP,
the existence of a dipole-allowed transition between the
F � 1 GS and the lowest 1S electron state may explain
the lack of success in describing the PL excitation (PLE)
spectra of this material using the standard scheme of tran-
sitions between the quantum size levels of the CB and VB
[19] (which successfully describes the PLE spectra of CdSe
[17] and InAs [18]). However, even within the limitations
of the present model the GS transitions calculated lie in
the approximate range of the experimentally measured ab-
sorption edge transitions seen in bare InP NCs [19]. It may
also explain the recent observation of upconverted PL in
this material [20].

In summary, we have shown the existence of intrinsic
GSs in semiconductor NCs within the effective mass
theory. These states do not usually occur in capped NCs
with similar material parameters across the heterointerface.
However, we found that even conventional BCs give us
GSs in two cases: in antidot-type CdS NCs embedded in
HgS and in bare NCs where the contribution of remote
bands to the conduction and valence band effective masses
is negative, as exemplified by InP and CdS NCs.

This material is based upon work supported by the U.S.
Army Research Office under Grant No. DAAH04-96-1-
0091 and by the Office of Naval Research.
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