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Dynamical Instability of Thin Liquid Films Between Conducting Media
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It is shown that thin dielectric liquid films between electrically conducting media are dynamically
unstable if the electronic work functions of the conductors are different. As a consequence, they are
expected to dewet by a spinodal dewetting scenario, i.e., via amplification of surface waves with mode
selection. The wave number of the fastest growing mode is discussed as a function of the strength of
the electric and dispersive forces. In contrast to what seems to be widely believed, it turns out that
electric forces dominate over dispersive forces in most experimental situations of the rather general type
studied here.

PACS numbers: 68.15.+e, 68.45.Gd
Structure formation processes in dewetting of thin liq-
uid films have attracted rapidly growing interest in recent
years [1–6]. This is due in part to the fundamental inter-
est in the basic interactions and spontaneous symmetry
breaking processes involved, but also to the enormous
technological relevance of adhesion failure mechanisms
of coatings. Therefore, most experimental studies in this
field considered thin liquid films on solid substrates at am-
bient conditions, such that the influence of the adjacent
medium (air) on the dynamics and on the driving forces
could be safely neglected. However, for simple practical
applications like underwater coatings for ships, transat-
lantic telecommunication cables, or marine oil drilling, it
is of great interest to study thin film coatings immersed in
a liquid counterphase. Given the abundance of thin film
systems between liquid phases in colloid science and biol-
ogy, the importance of such studies is even clearer. More
specifically, the fact that the media adjacent to the film
may be electrically conductive (cf. Fig. 1), such as the
aqueous phases involved in most of the above-mentioned
systems, must be taken into account. As it will be shown
below, this may indeed change the dynamical behavior of
the film dramatically.

This work was motivated in particular by recent experi-
ments with dielectric liquid films [poly-dimethyl-siloxane
(PDMS) and PDMS/polystyrene composite] on silicon
substrates, immersed in water [7]. A dynamical instabil-
ity of the films with mode selection was clearly observed
at various conditions. Although the observations could
be qualitatively discussed in the framework of disper-
sion forces, quantitative understanding was not achieved.
More specifically, in some cases, Hamaker constants had
to be assumed which exceeded the theoretically expected
values by more than 2 orders of magnitude [8]. The
present work thus explores the dynamical stability of di-
electric liquid films between two electrically conducting
counterphases. It turns out that these films exhibit, quite
generally, an instability driven by the electric field which
builds up across the film due to the difference of the elec-
tronic work functions of the adjacent media. This leads
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to the amplification of thermal surfaces waves (or initial
inhomogeneities in film thickness) and comprises strong
mode selection. The resulting scenario may be consid-
ered as a variant of spinodal dewetting [6], but with much
stronger driving forces than those arising from van der
Waals (i.e., dispersive) interactions. In future analysis of
experimental work involving liquid films between con-
ducting media, the effect discussed here must be taken
into account.

The equation of motion for the lateral liquid flow in
a thin film may be readily obtained from the continuity
equation (assuming incompressibility of the liquid),
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where x is the lateral coordinate, h�x, t� is the local film
thickness, and j�x, t� is the lateral liquid flow in the film,
integrated along the normal coordinate. The shape of the
flow profile and the viscosity of the liquid are absorbed
into the positive constant C. p�x, t� is the film pressure,
which can be written as
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FIG. 1. The system under consideration: a dielectric (noncon-
ductive) liquid film on a solid conductor, immersed in a con-
ductive liquid (e.g., water).
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The first term is the disjoining pressure in the film, with
A the Hamaker constant describing the van der Waals
interaction of the film with the surrounding media. The
second term represents the electrostatic pressure exerted
on the film by an electrostatic potential difference, U,
between the conducting media cladding the film, with e

being the dielectric constant of the film material. Finally,
the third term describes the Laplace pressure in the film,
with s denoting the interface tension between the film
and the upper (liquid) medium [9].

Let us rest for a while with the quantity U introduced
here. Consider a liquid film which is thin enough for
van der Waals forces to have to be included, i.e., whose
thickness is well below 1 mm. For all practical purposes,
it can be safely assumed that such a film will not be free
of defects, be it a (more or less conducting) dust particle
or a pinhole at which an electron exchange between the
conducting half spaces cladding the film may take place.
This leads to an electric potential difference, U, which is
equal to the difference in the electronic work functions
of the conductors. Away from the defects, the film will
thus be subject to an electric field, U�h, which is fully
determined by the film thickness and the work functions
of the two conducting media. The incorporation of the
second term in Eq. (2) is thus a necessity for the system
under study.

Let us now consider the fate of small fluctuations of the
thickness of an initially homogeneous film of thickness
h0. Inserting Eq. (2) into Eq. (1), and keeping only terms
linear in the amplitude of the fluctuations, we readily
obtain
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Here we have made the important assumption that U is
strictly constant. This is justified if the fluctuations of
the film are slow enough for the charges in the adjacent
media to follow instantaneously. Indeed, due to the
small thickness of the film, the lateral flow in the film
provides the bottleneck for the dynamics, and charge
equilibration in the adjacent conductors can be assumed to
be fast enough, even for ionic conductors such as aqueous
solutions.

A mode analysis ansatz, h�x, t� � h0 1 d cos�qx� 3

exp�t�t�, yields the growth rate, t21�q�, of the mode with
wave number q,
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from which the mode selection behavior is easily derived.
For the wave number of the mode the amplitude of which
grows fastest, qmax, one immediately obtains
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In close analogy to spinodal dewetting, one expects an
undulative dewetting pattern to evolve with a clearly vis-
ible characteristic wavelength equal to 2p�qmax [3,5,6].
For zero voltage, we have qmax �

p
A�4ps h22

0 , which is
the well-known result for spinodal dewetting by “destabi-
lizing” van der Waals forces (positive A). If, however,
the electric force dominates, qmax � U

p
ee0�2s h

23�2
0 .

In fact, this should be usually the case, as one sees im-
mediately if one puts in reasonable numbers. Typical
contact potentials are on the order of 1 V. Hamaker
constants are on the order of 10220 J [10]. Conse-
quently, at a film thickness of 100 nanometers, the elec-
tric term exceeds the van der Waals term by 3 orders of
magnitude.

Let us discuss the interplay of the electric and van der
Waals forces in some more detail. There are two natural
length scales in the system. One is the well-known pa-
rameter a �

p
jAj�4ps, which is on the order of a

nanometer and appears in the theory of spinodal dewetting
by van der Waals forces [11,12]. The other, j � jAj�
2pee0U2 is directly connected to the relative strength of
dispersive and electric forces. Inserting the above num-
bers, one obtains j � 0.1 nm. By defining Q � a�j2

and l � h0�j, we can rewrite Eq. (5) in “dimensionless”
form as

q2
max � Q2�l23 6 l24� . (6)

The sign of the l24 term is to be taken as the same as the
sign of A. In Fig. 2, q2

max�l� is plotted for both cases, the
dashed line representing positive A (destabilizing van der
Waals forces), and the solid line representing negative A
(stabilizing van der Waals forces). In the latter case, films
with h0 , j are dynamically stable.

For most applications of the model, l will be much
larger than 1, such that the dispersive contributions may
be neglected, and qmax ~ h

23�2
0 . The dependence of the

characteristic length scale of the dewetting pattern on

FIG. 2. The wave number of the fastest growing mode vs
the reduced film thickness, l. Dashed line, positive Hamaker
constant (destabilizing van der Waals forces). Solid line,
negative Hamaker constant (stabilizing van der Waals forces).
In the latter case, films with jlj , 1 are dynamically stable.
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system parameters such as the film thickness and the
electronic work functions may be used to clearly identify
the scenario described here from dispersion force driven
spinodal dewetting. It should be noted that in most
colloidal systems, where the conductors adjacent to the
film usually are aqueous solutions, the work function
differences are typically on the order of 10 mV. In
this case, j is on the order of 1 mm such that the
dynamical instability develops very slowly due to the
weakness of the destabilizing forces, and may be hard
to observe.

It should finally be mentioned that Eq. (6) applies
only if the screening lengths in the adjacent phases are
small compared to the film thickness. If this is not the
case, a more complicated behavior is to be expected.
More specifically, it is straightforward to show that the
voltage entering in Eq. (2) is to be replaced by V �
U��1 1 L�h�, with L representing the sum of the screen-
ing lengths in the two phases cladding the film. We then
have
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which is to be replaced in all further equations. As a
consequence, since L is positive, the dependence of qmax

upon l is weaker than with L � 0.
If the dispersion forces tend to stabilize the film (A ,

0), we can directly derive a stability criterion for the film
from Eq. (7). We obtain

L
j

. l4�3 2 l , (8)

which is plotted in Fig. 3. It clearly demonstrates the
stabilizing action of the finite screening in the adjacent
conductors upon the film. However, for any screening
length, there is obviously a finite thickness above which
the film becomes inevitably unstable.

In conclusion, the present work predicts a dynamical
instability of dielectric coatings between electrically con-
ducting media which is expected to occur quite univer-
sally and should play an important role for many systems
with practical applications. It is to be expected that the re-
sults presented here will cast a new light on a number of
effects which have been already observed, but remained
unexplained.
FIG. 3. The effect of the screening length in the adjacent
conductors on the film stability. Although the film becomes
more stable when the screening length is larger, there is always
a finite thickness above which the film becomes unstable.
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