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Calculations of Silicon Self-Interstitial Defects
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We report a theoretical study of self-interstitial defects in silicon using local density approximation
(LDA), PW91 generalized gradient approximation (GGA), and fixed-node diffusion quantum Monte
Carlo (DMC) methods. The formation energies of the stablest interstitial defects are about 3.3 eV
within the LDA, 3.8 eV within the PW91-GGA, and 4.9 eV within DMC. The DMC results indicate
a value for the formation 1 migration energy of the self-interstitial contribution to self-diffusion of
about 5 eV, which is consistent with the experimental data. This confirms the importance of a proper
treatment of electron correlation when studying such systems.

PACS numbers: 61.72.Bb, 66.30.–h, 71.10.–w
Silicon is the material at the heart of the microelectronics
industry. A deeper understanding of this technologically
important material is central to the fabrication of future
generation semiconductor devices. One of the important
problems in the manufacture of submicron devices is
the diffusion of dopant impurity atoms during thermal
processing, which limits how small they can be made. To
understand these effects requires a knowledge of diffusion
on the microscopic scale in situations far from equilibrium.
The diffusion of impurity atoms in silicon is critically
influenced by intrinsic defects such as self-interstitials
and vacancies, and therefore it is of great importance to
improve our understanding of the behavior of these defects.

Because of the technological importance of diffusion
in silicon many experimental and theoretical studies
have been carried out, including much work on silicon
self-interstitials. Unfortunately, it has not been possible
to detect the self-interstitials directly, although their
presence has been inferred from various measurements
[1]. Measurements of the self-diffusion constant or
self-diffusivity of silicon at high temperatures, using
radioactive isotopes of silicon as tracers, have established
an Arrhenius behavior with an activation energy in the
range 4.1–5.1 eV [2]. The self-diffusivity DSD is usually
written as the sum of contributions from independent
diffusive mechanisms. The contribution of a particular
microscopic mechanism can be written as the product
of the diffusivity, Di , and the concentration, Ci , of the
relevant defect, i.e., DSD �

P
i DiCi . In a recent review,

Gösele et al. [3] gave the best current experimental
estimates of the contributions to the self-diffusivity
as DICI � 914 exp�24.84�kBT � cm2 s21 for self-
interstitials and DVCV � 0.6 exp�24.03�kBT � cm2 s21

for vacancies, where kBT is in units of eV. These results
indicate that self-interstitial diffusion is important at
higher temperatures and is dominant above 1300 K. The
experimental situation regarding self-diffusion in silicon
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is, however, still highly controversial, especially when
it comes to the individual values of Di and Ci . Indeed,
experimental data has been used to support values of
the diffusivity of the silicon self-interstitial, DI, which
differ by 10 orders of magnitude at the temperatures of
around 800 ±C at which silicon is processed [4]. Clearly
self-diffusion in silicon is both technologically important
and imperfectly understood, and our aim is to perform
an accurate theoretical study which can help clarify the
situation.

Many theoretical studies of self-interstitials in silicon
have been performed. The most advanced of these have
used the local density approximation (LDA) to density-
functional theory (DFT) to calculate the defect formation
energies and energy barriers to diffusion [5,6]. Two
molecular dynamics studies using the LDA have also been
reported [6,7]. There are some differences between the
results of the various LDA calculations, but the consensus
view is that the split-�110�, hexagonal, and tetrahedral
defects (see Fig. 1) are low in energy. Other defects,
such as the split-�100� and bond centered interstitials, are
calculated to be more than 1 eV higher in energy, and
therefore we do not consider them here. In a recent LDA
study [7] a new defect named the “caged” interstitial was
predicted to be very low in energy, and so we have included
it in our study. We have also studied the saddle point
of Pandey’s concerted exchange mechanism [8] for self-
diffusion, which involves the exchange of neighboring
atoms in the perfect lattice. The aim of our work is to
perform LDA, PW91 generalized gradient approximation
(PW91-GGA), and fixed-node diffusion quantum Monte
Carlo (DMC) calculations to determine the formation
energies of the self-interstitials in silicon and see what
modifications arise from the different treatment of electron
correlation. Within each of the three methods we find the
split-�110� and hexagonal interstitials to be the stablest.
However, the formation energies of the stablest defects
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FIG. 1 (color). (a) The split-�110�, (b) hexagonal, and
(c) tetrahedral interstitial defects, and (d) the saddle point of
the concerted-exchange mechanism. The atom(s) forming the
defect are shown in red, while the nearest neighbors to the
defect atoms are shown in yellow. The bonds between the de-
fect and nearest neighbor atoms are shown in orange.

are significantly different in the three methods. We use
our DMC results to estimate the formation 1 migration
energy for the self-interstitial contribution to self-diffusion
as about 5 eV, which is in good agreement with recent
experimental estimates [3].

As a preliminary to our main calculations we performed
a thorough study at the LDA level [9]. The Si41 ions were
represented by a norm-conserving LDA pseudopotential.
LDA calculations for the fully relaxed defect structures
were carried out with fcc supercells for which the perfect
crystalline structure contains 16, 54, and 128 atoms, re-
spectively. The relaxed defect structures obtained with the
16, 54, and 128 atom cells were almost identical. The en-
ergies of the final structures were then recalculated using
the PW91-GGA and DMC methods. We also recalculated
the forces on the atoms using the PW91-GGA density func-
tional [10], but the forces were small, demonstrating that
the PW91-GGA and LDA structures are very similar. We
performed extensive tests of the convergence of the calcu-
lations with respect to the size of the plane-wave basis set
and the density of k-space sampling, and we estimate that
the LDA and PW91-GGA defect formation energies given
in Table I are converged to within 0.05 eV. (More details
of the LDA and PW91-GGA calculations will be reported
in a future publication [11].)

The structures of the split-�110�, hexagonal, and tetra-
hedral interstitial defects and of the saddle point of the
concerted-exchange mechanism are illustrated in Fig. 1.
The caged defect is not illustrated as it is similar to the
split-�110� interstitial. To obtain our caged structure we
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started from the atomic coordinates of Clark and Ack-
land [7] and relaxed the structure. The structure relaxed
towards the split-�110� interstitial and is therefore not a
stable defect. We decided to investigate the structure
obtained after partial relaxation, which is closer to the
split-�110� interstitial than the caged structure of Ref. [7].
One of the intriguing features of the various defect struc-
tures is the wide range of interatomic bonding they ex-
hibit. The bond length for the perfect crystal is 2.35 Å.
In the split-�110� structure the two atoms forming the de-
fect are fourfold coordinated, but two of the surrounding
atoms are fivefold coordinated. The hexagonal intersti-
tial is sixfold coordinated with bonds of length 2.36 Å
joining it to six neighbors, which are therefore fivefold
coordinated. The tetrahedral interstitial is fourfold coor-
dinated and has bonds of length 2.44 Å joining it to its
four neighbors, which are therefore fivefold coordinated.
The charge accumulation in these bonds is small, implying
they are weak. In Pandey’s concerted-exchange mecha-
nism two nearest neighbor atoms interchange via a com-
plicated three-dimensional path which allows the atoms to
avoid large energy barriers [8]. At the saddle point of
the exchange two bonds are broken so that the exchanging
atoms and two other atoms are threefold coordinated. At
the saddle point the exchanging atoms are joined by a very
short bond of length 2.15 Å, which has a large accumu-
lation of electronic charge at its center and is presumably
very strong. The degree and nature of the relaxations of
the atoms surrounding the various defect sites also vary,
being small for the tetrahedral interstitial but significant
for the other defects.

Our LDA formation energy for the split-�110� interstitial
is in good agreement with the result of Blöchl et al. [6].
We find the hexagonal interstitial to be low in energy in
agreement with earlier LDA results, and we find it to be
essentially degenerate with the split-�110� interstitial, with
DFT formation energies of 3.31 eV (LDA) and 3.80 eV
(PW91-GGA). In agreement with earlier LDA work we
find the tetrahedral interstitial to be unstable to small
displacements of the interstitial atom, while the split-
�110� and hexagonal interstitial defects are locally stable.
The split-�110� and hexagonal interstitials are therefore
low-energy locally stable defects with DFT formation
energies of about 3.3 eV (LDA) and 3.8 eV (PW91-GGA).

TABLE I. LDA, PW91-GGA, and DMC formation energies
in eV of the self-interstitial defects and the saddle point of the
concerted-exchange mechanism.

Defect LDA GGA DMC a DMC b

Split-�110� 3.31 3.84 4.96(24) 4.96(28)
Hexagonal 3.31 3.80 4.70(24) 4.82(28)
“Caged” 3.34 3.85 5.26(24) 5.17(28)
Tetrahedral 3.43 4.07 5.50(24) 5.40(28)
Concerted exchange 4.45 4.80 5.85(23) 5.78(27)
aThe 16 atom supercell.
b The 54 atom supercell.
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We have also calculated the energy barriers to diffusive
jumps between the low-energy structures within DFT,
finding a path for split-�110�–hexagonal diffusion with
a barrier of 0.15 eV (LDA) and 0.20 eV (PW91-GGA),
and a barrier for hexagonal-hexagonal diffusive jumps of
0.03 eV (LDA) and 0.18 eV (PW91-GGA).

Our LDA value for the activation energy of Pandey’s
concerted-exchange mechanism of 4.45 eV is in good
agreement with earlier calculations [8]. Although the LDA
activation energy and the PW91-GGA activation energy
of 4.80 eV for Pandey’s concerted exchange are within
the experimental range for self-diffusion of 4.1–5.1 eV
[2], our results indicate that the activation energies for in-
terstitial mediated self-diffusion are lower. The predic-
tion of two low-energy interstitial defects connected by
low-energy paths might be the explanation of the large
prefactor in the self-diffusivity [2,3]. However, our DFT
results give the sum of the formation and migration en-
ergies for self-interstitials as 3.5 eV (LDA) and 4.0 eV
(PW91-GGA), which are considerably smaller than the ac-
tivation energy for self-interstitial diffusion deduced from
experimental measurements of 4.84 eV [3].

We conclude that the DFT results for self-interstitial
diffusion in silicon do not afford a satisfactory explana-
tion of the experimental temperature dependence of the
self-diffusivity. There are a number of possible reasons
for this discrepancy. First, it would be more appropriate
to compare our calculated results with measurements of
the equilibrium self-diffusion constant at low temperatures,
but unfortunately such experimental data do not exist. A
further source of difficulty in comparing with experiment
could be due to the self-diffusion being slowed by trapping
of self-interstitials, for instance, by the carbon impurities
which are normally present in silicon. There is also a tech-
nical reason for questioning the accuracy of the DFT for
the self-diffusion problem. The wide range of coordina-
tion numbers (from 3 to 6) and the occurrence of weak and
strong bonds in the defect structures present a very severe
test of the accuracy of electronic structure methods. The
LDA and PW91-GGA functionals are believed to be fairly
reliable for describing changes in energy due to small dis-
placements of the atoms in materials such as silicon, and
consequently they give accurate phonon frequencies and
structures, but they are not reliable for the energy differ-
ences between structures with very different interatomic
bonding.

Given the doubts about the accuracy of the DFT func-
tionals and the technological importance of the problem,
we have recalculated the energies of the defect structures
using the DMC method. The DMC method [12] is a sto-
chastic method for solving the many-body Schrödinger
equation. It is now well established that the DMC method
can give an excellent description of electron correlation
in the ground state. We performed DMC calculations for
the 16 and 54 atom fcc structures obtained from our LDA
study. Relaxation of atomic positions in solids within
DMC has not yet been demonstrated, and we therefore
used the structures obtained from our LDA study. We
used the same pseudopotential as in our LDA study, and
the nonlocal energy [13] was evaluated using the “locality
approximation” [14]. Our guiding wave functions were of
the Slater-Jastrow type with the single-particle orbitals ob-
tained from LDA calculations with a basis set cutoff of 18
Ry calculated at the L point of the Brillouin zone. This
gives a much better representation of the charge density
and hence smaller finite size effects than the G point, while
still allowing the use of real Bloch wave functions [15].
The “Coulomb finite size effects” [16] were found to be
small, and we corrected for the residual “single-particle fi-
nite size effects” [16] using the results of our LDA study.
We used localized spherically symmetric functions for the
single-body part of the Jastrow term (denoted by x), each
consisting of a polynomial containing 16 parameters. For
the perfect crystal we used the same x function for each
atom. The atoms in the defect structures are not all equiva-
lent, and it was found beneficial to allow the x functions on
inequivalent atoms to differ. The parallel- and antiparallel-
spin two-body part of the Jastrow term were constrained
to obey the cusp conditions [17] and each contained eight
parameters [18]. The guiding wave function for the per-
fect structure contained 32 parameters, while those for the
defect structures contained 64 parameters. The optimal
values were obtained by minimizing the variance of the
energy [18,19].

First we calculated the cohesive energy of silicon within
the variational Monte Carlo (VMC) and DMC methods by
performing calculations for the atomic ground state and for
the perfect solid using the 54-atom simulation cell. For the
solid we included a correction for the zero-point energy of
0.061 eV per atom, and a finite size correction of 0.077 eV
per atom obtained from the results of VMC and DMC
calculations on cells containing up to 250 atoms [20]. The
resulting VMC and DMC cohesive energies of 4.48(1) eV
and 4.63(2) eV per atom, respectively, are in excellent
agreement with the experimental value of 4.62(8) eV per
atom.

The results of our DMC calculations for the defect
formation energies are shown in Table I. First we note
that the DMC results for the 16- and 54-atom simulation
cells are consistent, indicating that the residual finite size
effects are small. The clearest conclusion is that the
DMC formation energies are roughly 1 eV larger than
the PW91-GGA values and 1.5 eV larger than the LDA
values. Within DMC the hexagonal interstitial has the
lowest formation energy, while the split-�110� interstitial
is slightly higher in energy. The caged interstitial has
a slightly larger formation energy than the split-�110�
interstitial, which is expected because it is a distortion of
the split-�110� interstitial, while the tetrahedral interstitial
has a significantly higher energy. The saddle point of the
concerted exchange has an energy which is too high to
explain self-diffusion in silicon.
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Since mapping the energy barriers to diffusion is
computationally prohibitive within DMC we estimate the
migration energy as follows. The tetrahedral interstitial
is a saddle point of a possible diffusion path between
neighboring hexagonal sites. The DMC formation energy
of 5.4 eV for the tetrahedral interstitial is therefore an
upper bound to the formation 1 migration energy of the
hexagonal interstitial. The true formation 1 migration
energy is expected to be less than this, and we can use
the following argument to obtain a crude estimate of
it. Within the LDA we have found a diffusion path for
the hexagonal interstitial with a barrier of only 25% of
the tetrahedral-hexagonal energy difference. Applying the
same percentage reduction to the DMC barrier then gives
an estimate of the formation 1 migration energy of the
hexagonal interstitial of 5 eV. This estimate is in good
agreement with the experimental activation energy for
self-interstitial diffusion of 4.84 eV [3].

In summary, we have demonstrated the importance of a
proper treatment of electron correlation when calculating
defect formation energies in silicon. The formation ener-
gies are sensitive to the description of electron correlation.
The LDA and PW91-GGA functionals do not provide a
satisfactory explanation of the experimental temperature
dependence of the self-interstitial contribution to the self-
diffusivity because they predict formation 1 migration en-
ergies which are too small. The larger defect formation
energies found in our DMC calculations indicate a pos-
sible resolution of this problem. This may be an important
step in improving our understanding of self-diffusion in
silicon.

We thank Paul Kent and Randy Hood for help with the
calculations. Financial support was provided by the En-
gineering and Physical Sciences Research Council (UK),
Hitachi Europe Ltd., and Hitachi Japan Ltd. The DMC
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University of Cambridge High Performance Computing
Facility and at Hitachi’s Central Research Laboratory.
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