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Evolution of Electron Phase-Space Holes in a 2D Magnetized Plasma
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The nonlinear stage of the two-stream instability in a 2D magnetized plasma produces electron
phase-space tubes, the counterpart of phase-space holes in a 1D plasma. These tubes align primarily
perpendicular to the magnetic field B0 and have self-consistent bipolar electric fields parallel to B0.
Such bipolar electric fields have recently been observed in four different regions of the Earth’s space
plasma environment. Massively parallel 2D kinetic simulations show the dynamics of tube formation,
evolution, and breakup, accompanied by the generation of electrostatic whistler waves. We focus on
the breakup of the tubes and describe a new numerical study of tube stability.

PACS numbers: 52.35.Qz, 52.35.Sb, 52.65.Rr, 94.20.Rr
It has long been recognized that, in 1D, counter-
streaming beams of electrons which intersect generate
the two-stream instability and, after saturation, long-lived
structures of depleted electron density. These structures
appear as rotating vortices of trapped particles around
“holes” in phase-space [1,2]. The nonlinear evolution of
these holes has been the subject of substantial theoretical
and computational investigations, principally in 1D [3–7].
The phase-space structure of these holes has been modeled
using stationary Bernstein-Greene-Kruskal modes of the
Vlasov equation [8,9] and has been related to nonlinear
Landau damping [10,11]. In higher dimensions, electron
phase-space hole physics has received recent attention
[12–14] in the interpretation of spacecraft data. In this
Letter, we use electrostatic, kinetic simulations to explore
the nonlinear dynamics of holes in a 2D magnetized
plasma.

Studies of phase-space holes have acquired renewed
importance because of recent measurements of bipolar
electric field pulses—a signature of phase-space holes—
made in the Earth’s ionosphere, magnetosphere, and fore-
shock region. In 1994, Matsumoto et al. [15] first identi-
fied holes as the origin of bipolar electric fields measured
by the GEOTAIL satellite in the Earth’s magnetotail. In
1998, FAST satellite instruments measured bipolar elec-
tric field pulses in the downward current regions of the
auroral ionosphere at �2000 km altitude [16]. These
pulses have also been interpreted as signaling the pres-
ence of holes [13,14,17]. The FAST observation was
quickly followed by reports that the POLAR antennas
had measured similar waveforms at altitudes between 2
and 8.5 Earth radii [18]. Most recently, the same charac-
teristic bipolar signature was measured by WIND in the
Earth’s foreshock region [19].

The earliest multidimensional simulations of the two-
stream instability showed that phase-space holes, which
remain stable in 1D, quickly dissipate in an unmagnetized
2D or 3D plasma [1]. However, a magnetic field enables
holes to persist in higher dimensions [12,13]. The current
simulations extend these results and show that holes in
0031-9007�99�83(12)�2344(4)$15.00
�x, yx� phase-space generalize to tubes in �x, y, yx� phase-
space, aligned mostly perpendicular to B0. Further, at late
times, these simulations show that tubes and their associ-
ated bipolar electric fields break up into structures having
comparable sizes parallel and perpendicular to B0. This
Letter discusses the evolution of tubes, focusing on the
disintegration of elongated tubes and the concurrent de-
velopment of electrostatic whistler waves. These simu-
lations are performed in a regime where the roles of ion
dynamics and electron transport perpendicular to B0 are
negligible.

Our kinetic simulations use a massively parallel elec-
trostatic particle-in-cell (PIC) algorithm which neglects
perturbations in the magnetic field [20]. It is capable of
modeling either a finite or infinite magnetic field in 1D
or 2D. This code applies periodic boundary conditions to
model an initial-value problem and uses “quiet-start” al-
gorithms to minimize particle noise. Running the code
on supercomputers enables us to employ up to several
times 108 particles on meshes resolving up to 1024 by
256 points. Our PIC simulation results have been vali-
dated, in the case of an infinite magnetic field, through
comparisons with a new simulator that evolves the phase-
space distribution of density, f�x, y, yx�, by solving the
Vlasov equation numerically.

We first consider the full 2D evolution of phase-space
tubes and bipolar structures driven in a magnetized plasma
by a two-stream instability. Complementary features of
such simulations are presented in Refs. [13,14]. Figure 1
shows a number of key phases in the development,
evolution, and breakup of phase-space tubes as reflected
in the intensity jEj2 of their self-consistent (i.e., trapping)
electric field. This simulation was initiated with two
spatially homogeneous, equal temperature Maxwellian
distributions of electrons, one having a mean velocity
of yx � 0 and the second with yx � 5yth, where yth
is the thermal velocity of each distribution. It also
includes a Maxwellian distribution of hydrogen ions
with a mean velocity of yx � 0 and a temperature
matching that of a single initial electron distribution. The
© 1999 The American Physical Society
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FIG. 1. The three images show electric field energy as a
function of x̂, parallel to B0, and ŷ, perpendicular to B0, from
the 2D PIC simulations at three different times: (a) at 24v21

e ,
(b) at 448v21

e , and (c) at 1920v21
e . x and y are in units

of grid cells where each grid cell spans �1.5 debye lengths.
The darker shades indicate larger values of the log of E2 with
black showing E2

max and white showing values below 1023E2
max.

The images show only the left-hand most quarter of the total
simulation box. For animations, see Ref. [22].

magnetic field was chosen so that the ratio of the electron
cyclotron frequency to the plasma frequency equals five
(Ve�ve � 5). The simulation spans 1024 grid points
parallel to B0 (x̂ direction) and 128 perpendicular ( ŷ
direction). Each grid point spans roughly 1.5 debye
lengths where the debye length is calculated from the
late-time, saturated state temperature of all the electrons,
which is roughly 2.6 times the temperature of each initial
electron distribution.

During the early, linear stage of the two-stream instabil-
ity, shown in Fig. 1a, one observes a substantial degree of
wave coherence develop perpendicular to B0. This coher-
ence derives from cross B0 field communication via elec-
tric fields, as specified by the Poisson equation, because
the magnetic field strongly inhibits cross-field transport
of electrons. The coherence develops during the linear
growth phase because initially incoherent electron density
fluctuations which have the same sign at neighboring y
values contribute constructively to Ex , thereby reinforcing
one-another’s amplification, whereas those having oppo-
site signs contribute destructively. Through this mecha-
nism, the linear instability preferentially creates electron
tubes with coherence over a continuous range in y.

After the linear stage (a few plasma frequency periods,
v21

e ), nonlinear kinetic effects develop—primarily par-
ticle trapping. At the start of the nonlinear phase, the
distribution of electrons trapped in x forms an ensemble
of closely packed tubes elongated in y. These tubes in-
teract with one another displaying a rich array of non-
linear dynamical behaviors. The first interaction which
becomes apparent is the merging of tubes—a general-
ization of merging 1D holes [21]. In 2D, because tubes
are not perfectly straight, merging typically begins at the
point of closest approach between two tubes. The merger
then propagates perpendicular to B0, essentially “zipping”
the tubes together. However, sometimes only parts of the
tubes merge completely, with the remainder breaking off
to form independent tube segments. In this simulation,
a large number of tube segments initially form. When
two segments with overlapping but not identical extents
perpendicular to B0 merge, a longer tube is produced.
A series of such mergings creates tubes hundreds of de-
bye lengths long, as the bipolar field structures show in
Fig. 1b. The dynamical processes leading to this stage
are clearly visible in the animations of jEj [22].

Over the next few thousand plasma periods, the bipolar
electric fields diminish in amplitude and break into shorter
segments—as do the underlying phase-space tubes. By
the time corresponding to Fig. 1c, the tubes and field
structures have developed comparable scales in x and y.
After this point, the qualitative character of the electric
fields does not appear to undergo further evolution—at
least for the many thousands of v21

e .
Simultaneously with the tube breakup, electrostatic

whistler waves appear and grow. These whistlers show
up as the nearly horizontal streaks in Figs. 1b and 1c.
Electrostatic whistlers are a generalization of Langmuir
waves in a highly magnetized plasma where the wave
vector is oblique to B0 [23]. They have the fluid dis-
persion relation in the electron center-of-mass frame
v � ve cosu, where u is the angle between k and B0.
This dispersion arises because, in a sufficiently magnetized
plasma, electrons respond only to the parallel component
of the electric field, Ex � E cosu. The primary whistler
waves that develop in the simulations have a u near 90±,
making them low frequency waves. The small kx of these
whistlers necessitates the large simulation size parallel to
B0 employed here.

In order to better understand the breakup of phase-space
tubes, we performed a simulation which numerically ana-
lyzes the stability of 1D tubes in 2D. This simulation was
run without dynamic ions and with infinite magnetization.
The validity of assuming an infinite magnetic field was
tested by showing that full two-stream simulations with
Ve�ve � 5 and Ve ! ` yield virtually identical results.
A similar comparison showed that H1 ions also had little
effect on the evolution of phase-space tubes.

This new simulation was initiated with the same
counterstreaming electron beams as above, except
with Ex�x, y� replaced by the y-averaged electric field,
Ex�x� � 1�l

Rl
0 Ex�x, y� dy, effectively making this a 1D

simulation. After many thousand v21
e , this simulation
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FIG. 2. Electric field energy plotted versus x̂ and ŷ from a
2D simulation initialized with three stable 1D tubes at four
different times: (a) at 0, (b) at 320v21

e , (c) at 640v21
e , and

(d) at 1760v21
e . The shading has the same meaning as in

Fig. 1, but, now, x and y are in units of grid cells where
each grid cell spans �0.75 debye lengths. Images (e)– (h)
show jE�kx , ky�j at these same times and show the migration
of energy from tubes to whistlers.

stabilized into three 1D tubes as shown in Fig. 2a. At
this point the electric fields were made fully 2D. The
subsequent evolution reveals that the straight structures
are unstable, developing kinks as seen in Figs. 2b and 2c.
The kinks grow in amplitude until the structures break
up, as in the full 2D simulation of Fig. 1, and evolve into
the long-lived state shown in Fig. 2d. Simultaneously
with the kinking of the tubes, electrostatic whistler waves
develop and grow as seen in Figs. 2b–2d. Figure 3
shows a snapshot of a tube in �x, y, yx� phase-space, as
characterized by an isosurface of fe, during the stage
of kinking and whistler wave growth from a two-stream
simulation.

Figures 2e–2h show the k-space spectral distribution
of wave amplitude jEkj at the same four times as the real-
space plots (Figs. 2a–2d). The intense modes at ky � 0
in Fig. 2e arise from the spectrum of the 1D tubes. At
time 320v21

e , the real-space kinks (Fig. 2b) appear as
vertically displaced sidebands in k space (Fig. 2f). The
whistlers appear simultaneously in the spectrum as the
intense modes with the same ky as the kink sidebands
except kx ø ky . Thus we can conclude that the whistlers
and kinks have the same vertical wave number (note,
2346
FIG. 3. Isosurface of phase-space tube taken from a two-
stream simulation without ions. This image shows an isosur-
face of a single value of phase-space, f�x, y, yx� � c, averaged
over yy . The tube results from the reduced electron density
inside the 2D electron phase-space hole. The sheet below the
tube results from passing particles. An upper sheet of passing
particles traveling in the opposite direction as the lower sheet
particles have been removed to show the tube.

that the apparent whistler wavelength in the real-space
plots is half the true wavelength because we are plotting
jEj). Also, the kinks oscillate with the same frequency
as the whistlers when viewed from the frame of the
tubes. The dynamical behavior appears clearly in the
animations [22].

As the system continues to evolve, the tubes break
into pieces with perpendicular sizes comparable to the
vertical wavelength of the electrostatic whistler waves
(Fig. 2c). This breakup is associated with a broadening
in the sideband spectra (Fig. 2g). After a few thousand
additional plasma periods, the distribution of electric
fields in this 1D ) 2D simulation (Fig. 2d) appears
similar to those in the full 2D simulation of Fig. 1c. At
this point, the whistlers contain the bulk of the wave
energy, as seen in the k spectrum (Fig. 2h).

Although the details of how the kinking phase-space
tubes interact with the whistlers remains unclear, we
can nevertheless monitor the intensity of jEyj, which is
dominated by the whistlers, as a measure of the rate of
whistler growth. Figure 4 shows the spatial average of
�jEyj�. The approximately straight portion of the curve
suggests a period of exponential growth, which may
be associated with a linear instability. However, since
this segment spans only �1 order of magnitude in wave
intensity, further confirmation is needed.

In addition to the simulations discussed above, we
have performed related simulations with a wide variety of
parameters. We comment on these other runs here only
insofar as they impact on the evolution of electron phase-
space tubes.

In 1D simulations, properties of the ion distribution
(e.g., mass, mean velocity, and temperature) affect the
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FIG. 4. The spatially averaged perpendicular electric field
squared (

p
�E2

y �) shows the growth of whistler waves in the
1D ) 2D simulations.

formation and evolution of electron phase-space holes [7].
However, for the simulation of Fig. 1, the H1 ions have
little measurable effect on the tubes even though the same
ion distribution in an otherwise equivalent 1D simulation
causes electron phase-space holes to deteriorate over
a period of several thousand v21

e . Depending on the
properties of the ion distribution, ions may significantly
impact the 2D dynamics, as evidenced by the presence of
lower hybrid waves in these simulations [14].

The formation, evolution, and breakup of tubes remains
remarkably independent of magnetization level provided
Ve . ve. By contrast, when Ve , ve, the dynamics
change dramatically. At the extreme, when Ve � 0 (i.e.,
B0 � 0), phase-space holes and tubes do not form [1],
presumably because electron transport perpendicular to
the beam direction destroys them before they have a
chance to form. As Ve increases from zero toward ve,
tubes do form. However, their subsequent evolution and
decay is different than when ve , Ve. Specifically,
the tubes are comparatively short lived, and kinks and
electrostatic whistler waves do not appear. The lack of
whistler waves presumably results from the difference in
the linear dispersion relation in these two regimes. When
Ve . ve, the Langmuir wave branch connects to the
electrostatic whistler branch for waves oriented oblique
to B0, whereas, when Ve , ve, the Langmuir branch
connects to the upper hybrid branch.

Finally, we wish to comment on the circular struc-
tures with ringlike maxima in jEj2, often found after
many thousand v21

e in the magnetized 2D simulation
(cf. Figs. 1c and 2d). A spacecraft antenna measuring
electric fields, while passing through one of these struc-
tures, would typically detect a bipolar spike parallel to the
direction of motion and a comparable unipolar spike in the
perpendicular direction, in accord with FAST spacecraft
observations [16]. However, in the periodic simulations,
the electric field of whistler waves generally dominates
Ey . We conjecture that in space the large whistler group
velocity parallel to B0 might advect these waves away
from the regions containing the ringlike structures. These
structures would then comprise the dominant observable
fields.
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