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Convection versus Dispersion in Optical Bistability
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We analyze experimentally the combined action of convection and a diffusionlike process in a bistable
nonlinear optical resonator. We show that the very existence of bistability in this device strongly
depends on a competition mechanism between these two processes. This mechanism is described
analytically in terms of the switching wave dynamics of a Fisher-Kolmogorov equation.

PACS numbers: 42.65.Sf, 42.65.Pc, 42.60.Da, 47.27.Te
Convection is well known to dramatically affect the dy-
namics of nonlinear distributed systems in such diverse
fields as fluid mechanics [1–3], plasma physics [4], popu-
lation dynamics, biochemistry [5], and nonlinear optics
[6–9]. On the one hand, convection was shown to give
rise to new dynamical behaviors such as self-pulsing in-
stabilities [7] or pattern selection [9] in nonlinear opti-
cal resonators. On the other hand, convective transport
mechanisms were shown to be responsible for the inhi-
bition of instabilities such as the plasma beam instability
[4], bistability [3,6], or intracavity modulational instability
[8]. These cases put into play the so-called convectively
unstable states where dynamically amplified local pertur-
bations of a finite system are advected away more rapidly
than their rate of spreading in such a way that the system,
although linearly unstable, may be considered as stable
[3,10]. As a general rule, the actual behavior of these
systems is the result of a competition between convection
and other physical mechanisms.

In the present Letter we investigate theoretically and ex-
perimentally a system whose basic dynamical behavior is
drastically ruled by a competition mechanism between dis-
persion and convection. We consider an optical bistable
system consisting of a simple passive fiber cavity synchro-
nously pumped by a pulsed laser (see Fig. 1). Bistability
in the system stems from the combined action of the cav-
ity feedback and the Kerr nonlinearity of the fiber. Syn-
chronous pumping means that the time-of-flight of the light
pulses in the cavity is adjusted to the laser repetition time.
Convection is introduced in this system through pumping
synchronization mismatch due to inaccuracy in the cavity
length. The remarkable feature of this device is that it al-
lows, through the control of the cavity length, for a fine
tuning of the amount of convection with respect to disper-
sion and, hence, to study the competition between these
two fundamental processes. This contrasts with other de-
vices such as practical reaction-diffusion systems in which
diffusion is generally completely smeared out as soon as
convection is introduced. In this respect, nonlinear reso-
nators constitute ideal test beds for the experimental study
of the competition between convection and diffusionlike
processes that is liable to affect a broad range of physi-
cal systems. In this Letter, we illustrate the importance of
this competition by studying the inhibition of the bistable
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response of an optical Kerr cavity under the influence of
convection. Moreover, we show that the very existence of
bistability drastically depends on this competition mecha-
nism. These observations are confirmed by an analytical
description of the phenomenon. The present work consti-
tutes a practical illustration of the concept of nonlinearly
convective unstable states proposed in Ref. [3].

The synchronously pumped nonlinear passive fiber ring
cavity that we consider has been previously investigated
for the study of modulational instabilities [11]. It is
represented schematically in Fig. 1. We refer the reader
to Ref. [11] for a detailed description of the experimental
arrangement. It was shown in Ref. [12] that the intracavity
field is ruled by the following dimensionless equation:

≠tE � S�t� 2 �1 1 i�D 2 jEj2��E

2 ih≠2
ttE 2 d≠tE , (1)

where t is the slow time that describes the evolution of the
field envelope E at the scale of the cavity photon lifetime,
while t is a fast time defined in a reference frame that
travels at the group velocity of light in the fiber. The
source term S�t� represents the pump pulses profile. The
damping term 2E represents the effect of the cavity losses.
The parameter D � d0�a is the cavity phase detuning, a

being the overall cavity loss (i.e., including intput/output
coupler transmissions and fiber loss); and d0 � 2mp 2

f0, where f0 is the cavity round-trip phase shift, and m is
the order of the closest cavity resonance. The dispersion
parameter h will be taken either equal to zero to represent
the absence of dispersion or equal to unity to represent the
normal dispersion regime considered in our experiment.
Finally, the convection parameter d represents the effect

FIG. 1. Experimental setup.
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of synchronization mismatch. With the normalization we
used [12], d � �2��jb2jLa��1�2DT , where b2 is the fiber
dispersion coefficient, L is the cavity length, and DT is the
synchronization mismatch, i.e., the difference between the
laser repetition time and the cavity round-trip time.

Equation (1) is identical to the mean-field model derived
by Haelterman et al. for the description of spatial trans-
verse effects in the nonlinear Fabry-Perot resonator [6]. In
that case, the convective term was introduced to account
for oblique incidence of the pump beam. We briefly re-
call here the influence of convection on the features of this
equation. In the case of continuous wave (cw) pumping
(i.e., when convection plays no role since S is constant
and all t derivatives can be set to zero), the steady-
state solution of Eq. (1) exhibits bistability, provided that
D . Dc �

p
3. In the case of synchronous pumping with

short pulses, bistability still exists. The only qualitative
difference with respect to cw pumping is the presence, in
the intracavity pulse profile, of switching waves that sepa-
rate the lower and upper states of the bistable cycles [13].
However, in the limit of zero dispersion (h � 0) the pulsed
pumping regime is fundamentally different as regards the
effect of convection. Indeed, in the presence of convection
(≠tE fi 0) the steady-state pulse profile of Eq. (1) with
h � 0 is given by the solution of the first order differen-
tial equation obtained by setting ≠tE � 0. Such a solution
being unique, one reaches the conclusion that bistability of
the finite pulse is forbidden in the presence of convection.
As was done in Ref. [6], this feature can be physically in-
terpreted in terms of feedback. In a cavity, the feedback
required for bistability stems from the point-to-point su-
perposition of the pump field with the intracavity field at
each pass in the input coupler of the cavity. When there
is a synchronization mismatch, the pump field S at a given
time t superimposes with the intracavity field E at a time t

that is different at each round-trip so that, for a given point
in the pulse envelope, there is effectively no feedback in
the system. Bistability is therefore forbidden even if the
envelopes of the pump and intracavity pulses overlap over
a large part of their width in the cavity input coupler.

Dispersion is able to restore the feedback through the
introduction of a nonlocality in the pulse envelopes, in
a way akin to what happens with diffusion in chemical
or biological systems. Indeed, owing to dispersion, the
amplitude at a given time t of the intracavity pulse at
the beginning of the cavity round-trip influences, after
propagation in the cavity, the amplitude distribution of the
pulse in a whole region surrounding time t. This region
of influence may be large enough to compensate for the
synchronization mismatch DT so as to restore the feedback
and, hence, bistability.

We have studied experimentally this fundamental com-
petition mechanism between dispersion and convection.
In our experiment, we use a 7.4 m long all-fiber ring cav-
ity in which light is launched through a standard 80�20
fiber coupler. The cavity is synchronously pumped by
a mode-locked Nd:YAG laser emitting 180 ps (FWHM)
pulses at 1064 nm with a repetition rate of 82 MHz. The
cavity length is precisely controlled by means of a me-
chanical fiber stretcher that allows for synchronization
tuning with a resolution of �50 fs. During our measure-
ment of the bistable cycles, the input power was kept con-
stant while the cavity detuning D was varied by applying
a triangular signal to a piezoelectric fiber stretcher. Our
results are illustrated in Fig. 2, which shows the bistable
cycles obtained with several values of the synchronization
mismatch for a mean input power of 2.8 W. These results
reveal quite remarkably that a synchronization mismatch
as small as DT � 600 fs (i.e., only 0.3% of the pump
pulse duration) is sufficient to make bistability disappear.

In order to develop an analytical description of this phe-
nomenon, it is useful to give more details on the nonlinear
intracavity wave dynamics in the presence of convection.
In the pulsed regime, the multivalued response of the cavity
is associated with the existence, in the profile of the intra-
cavity pulse, of switching waves that link adjacent tem-
poral domains in which the system is respectively on the
upper and lower states of the bistable cycle. Such switch-
ing waves (SW’s) have already been studied numerically in
the spatial domain by Rozanov et al. in the framework of
a study of transverse effects in diffractive nonlinear Fabry-
Perot resonators [13]. Following that paper we can infer
that in a cw pumped cavity the SW’s consist of steady-
state fronts that propagate at a speed determined by the
input pump amplitude. For a given cavity detuning, only
one value of the pump amplitude, say S�, gives rise to a
stationary SW. For higher (lower) pump amplitudes, the
SW’s exhibit a nonzero velocity resulting in the extension
of the upper (lower) state domain. The maximum values
of the SW velocity are obtained at the two limit points of
the bistable cycle, say, Sup and Sdown. Note that, since
we consider here the temporal domain, in contrast with
Refs. [6,13], the term velocity means the translation speed
within the traveling reference time frame t.

In the pulsed regime in the absence of convection,
the SW’s in the steady-state intracavity pulse profile are
located at the values of t corresponding to the critical
value of pump amplitude, S�. Therefore when increasing

FIG. 2. Bistable cycles for (a) a perfect synchronization, and
with a synchronization mismatch of (b) 150 fs, (c) 300 fs, and
(d) 600 fs. The mean input power was set to 2.8 W.
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(decreasing) the pump pulse amplitude the two SW’s move
apart (closer together). This means that if the system
is close to up-switching (down-switching) the SW’s are
far apart (close together). This feature is illustrated in
Fig. 3(a), which shows several experimental pulse profiles
measured at the cavity output by a streak camera in the
conditions of Fig. 2(a).

With a nonzero synchronization mismatch, the convec-
tive term in Eq. (1) is responsible for a drift motion of
the SW’s at the velocity d. The up-stream (down-stream)
SW moves closer to (away from) the pulse peak where the
pump amplitude is higher (lower) than S�. In that region
the natural velocity (i.e., the velocity in the absence of con-
vection) of the SW is therefore such that the upper (lower)
state domain gets favored and tends to grow. It thus ap-
pears that the natural SW velocity counteracts the effect
of convection. Consequently, in the intracavity pulse pro-
file, stationary SW’s are formed that result from a balance
between both velocities. The resulting steady-state pulse
profile is then asymmetric as illustrated in Fig. 3(b), which
shows the pulse profile near down-switching when the syn-
chronization mismatch was shorter than 100 fs. Of course,
stationary SW’s are formed only if the convection veloc-
ity d is not larger than the maximum value of the natural
velocity of the SW, that is, the velocity at up-switching
S � Sup . If this condition is not satisfied, there is no mean
to compensate for the fast convective motion of the up-
stream SW that thus always goes across the pulse maxi-
mum so that the upper state domain is washed away. In
this situation bistability is inhibited by convection.

This analysis provides us with a way to calculate
the maximum value of the synchronization mismatch
compatible with bistable operation of the device, say,
DTmax. This value is simply given by equalizing the
drift velocity d � �2��jb2jLa��1�2DT with the maximum
SW velocity ymax obtained in S � Sup , i.e., DTmax �
�jb2jLa�2�1�2ymax. However, the inherent complex na-
ture of the chromatic dispersion term in Eq. (1) prevents
us from deriving a minimizing potential to describe ana-
lytically the SW dynamics of our nonlinear cavity. We
had then to resort to an approximate calculation of ymax.

FIG. 3. (a) Pulse profiles at zero synchronization mismatch.
When approaching down-switching, the SW’s go closer to-
gether. (b) Asymmetric pulse shape observed with a small
cavity mismatch near down-switching.
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We start from Eq. (1) where we consider S constant,
d � 0, and h � 1. To calculate analytically the velocity
of the SW solutions of Eq. (1), we restrict our analysis to
nascent bistability. This means that we consider Eq. (1)
in the vicinity of the critical point of optical bistability,
namely, the inflection point (with infinite slope) of the
intensity response curve corresponding to the critical
detuning for the onset of optical bistability D � Dc �p

3. To this end, we introduce a small parameter e ø 1
that measures the distance from the critical point and
we express the cavity detuning in the form D � Dc�1 1

e2I�, where I is a quantity of order one. Next, we
define new time scales te � e2t, te � 31�4et to take
into account the slowing down of the dynamics around
the critical point. Finally, we decompose the electric
field into its real and imaginary part E � u 1 iw, and
we define a moving frame j � te 2 Vte that travels at
the velocity V � 31�4y�e (to be determined) of the SW.
In this moving frame, the SW solution is stationary so
that Eq. (1) eventually reduces to a couple of ordinary
differential equations for u and w with V as a parameter:
S 2 u 2 w�u2 1 w2 2 D� 1 e2�Vu0 1

p
3 w00� � 0 ,

(2)

2w 1 u�u2 1 w2 2 D� 1 e2�Vw0 2
p

3 u00� � 0 ,
(3)

where primes denote derivatives with respect to j. Our
strategy is now to seek solutions of Eqs. (2) and (3) in the
vicinity of the nascent bistability. To this end, we expand
all variables in terms of e as Z � Zc�1 1 eZ0 1 e2Z1 1

e3Z2 1 . . .�, where Z is any of the three quantities
�u�j�, w�j�, S� and Zc is the corresponding coordinate
of the critical point: uc � �3�4�Sc, wc � 2�

p
3�4�Sc,

Sc � 2
p

2�33�4.
At first order in e, we find S0 � 0 and w0�j� � 2u0�j�.

At second order, we find S1 � �3�4�I. Finally, at third
order we obtain a differential equation for u0:

u00
0 1 Vu0

0 1 f�u0� � 0 , (4)

where f�u0� � 22u3
0�3 1 Iu0 1 4S2�3 in which

S2, being defined through the relation S � Sc�1 1

�3�4�e2I 1 S2e3�, represents the role of the pump am-
plitude. Equation (4) has the form of the well-known
Fisher-Kolmogorov equation [14,15]. In the present
context, the cubic polynomial f�u0� is directly related to
the characteristic S shape of the bistable intensity response
of the cavity. The roots of f�u0� correspond indeed to
the homogeneous steady-state solutions of Eq. (4). Note
that, as expected, it is only when I . 0, i.e., D . Dc,
that f�u0� has three real roots, namely, ul

0, ui
0, and uu

0.
Assuming ul

0 , ui
0 , uu

0, these solutions correspond,
respectively, to the lower, intermediate, and upper branch
of the bistable cycle. With these notations, the switching
wave solution of Eq. (4) that connects the lower and the
upper states reads

u0�j� � ul
0 1 �uu

0 2 ul
0� �ekj��1 1 ekj�� , (5)

where k � �uu
0 2 ul

0��
p

3. The corresponding velocity is
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V �
p

3 ui
0. From Eq. (4), we can easily obtain the ve-

locity at up-switching, i.e., in S2 � �I�2�3�2, where ui
0 �

ul
0 � �I�2�1�2. With the units of Eq. (1) we find jymaxj �

��D 2 Dc��2�1�2 that leads, in real units, to the following
expression of the maximum synchronization mismatch:

DTmax �
p
jb2jLa�2

p
�D 2 Dc��2 . (6)

This analytical expression indicates how the various physi-
cal parameters influence the role of convection in the
onset of bistability. In particular, it illustrates the compe-
tition mechanism between convection and dispersion dis-
cussed above. Equation (6) shows indeed that a small
dispersion leads to a high sensitivity to convection. In the
limit of zero dispersion, b2 � 0, the slightest amount of
convection inhibits bistability since one finds in this case
DTmax � 0.

We have checked the validity of our analytical model
[Eq. (5)] by comparing it with the SW solutions of Eq. (1)
calculated numerically. The results are summarized in
Fig. 4(a), which shows the maximum SW velocity (i.e.,
the velocity at up-switching) versus the cavity detuning.
As expected, a good agreement is obtained only in the
vicinity of the critical detuning Dc. However, even for
larger values of the detuning as those considered in the
experiment, the analytical description of the role of the
detuning is still verified qualitatively. A qualitative agree-
ment is also obtained in the profile of the SW as illustrated
in Figs. 4(b) and 4(c), which show the SW intensity pro-
file for D � 4 as obtained [4(b)] from numerical solu-
tion of Eq. (1) and [4(c)] from Eq. (5). As can be seen
the width of the SW is predicted correctly. The discrep-
ancy observed for the SW velocities in Fig. 4(a) may be
attributed to the fact that the overshoot oscillations that
are observed numerically at large detunings are not de-
scribed by the analytical model Eq. (5) as can be seen in
Figs. 4(b) and 4(c).

It is interesting to evaluate the value of DTmax from the
parameters of the experiment. Through the measurement
of the cavity resonance width, we have evaluated a �
0.45, and from the bistable cycle at zero synchronization
mismatch [see Fig. 2(a)] we calculate a phase detuning at
up-switching of d0 � 2.15 so that D � d0�a � 4.8. Nu-

FIG. 4. (a) Solid line represents the velocity of the SW at
up-switching. The dotted line shows the analytical prediction.
(b), (c): Temporal profile of the SW obtained for D � 4 at up-
switching. (b) shows the exact numerical result while (c) shows
the analytical prediction.
merical simulation of Eq. (1) then leads to a maximum SW
velocity of ymax � 3.5 that gives DTmax � 640 fs, which
is in good agreement with the experimental observation.

In conclusion, by means of a simple all-fiber optical
resonator, we have experimentally demonstrated that dis-
persion can efficiently overcome the inhibiting effect of
convection in optical bistability. We have shown that dis-
persion competes with convection through the introduc-
tion of a nonlocality in a way akin to what happens with
diffusion in chemical or biological systems. This compe-
tition mechanism has been described in terms of switch-
ing wave dynamics. This approach allowed us to develop
an analytical description of the phenomena based on the
reduction of the complex mean-field model of nonlinear
optical cavities to a Fisher-Kolmogorov equation. The
structural simplicity of the studied device and the gen-
erality of the phenomenology involved as well as of the
mathematical treatment give to our study a universal char-
acter. Our results are thus liable to improve the knowl-
edge and the understanding of the behaviors of distributed
bistable systems encountered in nonlinear optics as well
as in other fields of nonlinear science.
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