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Second-Order Electron Self-Energy in Hydrogenlike Ions
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A calculation of the loop after loop irreducible contribution of the second-order electron self-energy
for hydrogenlike ions with nuclear charge numbers 3 # Z # 92 is presented. The interaction with the
nuclear Coulomb potential is treated nonperturbatively in the coupling constant Za. Our results are
in strong disagreement with recent calculations of Mallampalli and Sapirstein for low-Z values but are
compatible with the two known terms of the analytical Za expansion.
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The numerical evaluation of the complete set of radia-
tive corrections of order a2 but to all orders in Za for
hydrogenlike ions with arbitrary nuclear charge numbers
Z is a challenging theoretical problem. It is important
to provide theoretical results for the Lamb shift for the
comparison with available experimental data for highly
charged ions. But also in the low-Z region exact numeri-
cal data are highly appreciated since they allow one to test
the reliability of results obtained by means of analytical
Za expansions. For a general review of the current theo-
retical and experimental situation in hydrogenlike heavy
systems, we refer to Ref. [1]. With respect to the vari-
ous two-loop corrections only the subset of the second-
order electron self-energy (SESE) remains uncalculated
until now. These contributions to the Lamb shift are rep-
resented by the Feynman diagrams in Fig. 1. The first
diagram depicted in Fig. 1(a), i.e., the loop after loop ir-
reducible contribution, has been calculated previously for
selected values of Z � 70, 80, 90, and 92 [2] and more
recently for the entire range of nuclear charge numbers be-
tween 1 # Z # 92 [3]. Employing the Feynman gauge
commonly used in calculations of QED corrections, the
diagram [Fig. 1(a)] can be renormalized and thus the cor-
responding energy shift can be evaluated separately. In
Ref. [3] it was denoted as a “perturbed orbital” contribu-
tion. A fair agreement between the results obtained in
Refs. [2,3] has been achieved.

The calculation of the remaining graphs depicted in
Figs. 1(b)–1(d) is a much more difficult task. This is
predominantly due to the fact that only the sum of all
these diagrams allows for a renormalization leading to
gauge-invariant expressions. Accordingly, their contribu-
tions to the total energy shift have to be evaluated si-
multaneously. A specific part of it has been calculated
recently for Z � 92 within the framework of a general-
ized potential-expansion approach [4]. However, it is not
obvious whether this part is the dominant one or not.

Our final goal is to calculate the remaining SESE cor-
rections depicted in Figs. 1(b)–1(d). We decided to em-
ploy the renormalization scheme developed in Ref. [5]
0031-9007�99�83(12)�2312(4)$15.00
(see also Ref. [6]) in combination with the partial-wave
renormalization method [7,8]. In view of the complexity
of the evaluations, it is highly desirable to compare the
results obtained within different numerical approaches.
Since the corresponding numerical calculations are ex-
tremely time consuming (the same holds true for the
calculations performed in Ref. [4]), one has to develop
appropriate numerical methods. One approach which
simplifies the calculations considerably has been applied
recently for the evaluation of the first-order electron
self-energy (SE) [9,10]. We plan to apply similar tech-
niques for calculating the complete two-photon self-
energy as well. This approach is based on the multiple
commutator expansion method [11].

One motivation for the present studies has been to test
this approach in the case of the irreducible SESE (a) correc-
tion. In addition, we had to elaborate the most time-saving
procedure compatible with the required level of accuracy.
Therefore we employed a minimal number of grid points
and partial waves that could guarantee an accuracy of 10%.
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FIG. 1. The second-order electron self-energy Feynman dia-
grams. The double solid line denotes the electron in the field
of the nucleus, the wavy line denotes the photon. The double
line with the bar denotes the electron propagator with the
reference state being excluded from the summation over the
complete Dirac spectrum. The symbol ≠

≠E in (b) denotes
the derivative of the self-energy graph with respect to the en-
ergy parameter E in the bound-electron propagator. The graphs
(a) and (b) correspond to the irreducible and reducible parts of
the loop after loop contribution, the graph (c) corresponds to the
loop inside loop contribution, and the graph (d) corresponds to
the crossed loops contribution.
© 1999 The American Physical Society
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Using the exact expressions for SESE (a) we are in the
position to compare with recent results reported by Mal-
lampalli and Sapirstein [3]. Agreement is found for large
values of Z; however, serious discrepancies (more than
50% deviation) between our results for the energy shifts
and those presented in Ref. [3] are obtained in the low-Z
region. The significant disagreement with previous calcu-
lations performed by Mallampalli and Sapirstein is indeed
a crucial point. In Ref. [3] numerical results for the energy
shift have been obtained up to Z � 1 and compared with
the analytically known terms of the Za expansion. From
the observed discrepancies a strong indication for a non-
perturbative nature of the SESE correction was deduced
even in the case for hydrogen. However, perturbation the-
ory has been employed intensively in many calculations of
radiative corrections to test QED for weakly bound atomic
electrons. Considerable success was achieved in this di-
rection during the past several years [12–14]. In contrast
to the results and the conclusions drawn in Ref. [3], our
numerical results are consistent with the perturbation the-
ory expansion for small Z. Based on exact calculations we
can establish the validity of the Za expansion in the low-
Z region which represents the most important outcome of
the present investigation.

The renormalized SE expression for the atomic state ja�
is given by [9,10]
DEa � �ajŜb�Ea�ja�ren � �ajŜb�Ea�ja� 2 �ajŜf ja� �
X̀
l�0

�ajŜ�l�
b �Ea�ja�ren �

X̀
l�0

��ajŜ�l�
b �Ea�ja� 2 �ajŜ�l�

f ja�� , (1)

where Ŝb and Ŝf are the bound- and free-electron self-energy operators, and Ŝ
�l�
b and Ŝ

�l�
f are terms of the corresponding

partial-wave expansions. The matrix element of Ŝ
�l�
b can be written as the sum of a logarithmic and a sign terms:
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Here Dna � En 2 Ea, a1ma
m
2 � 1 2 a1 ? a2, jl�z� and nl�z� are spherical Bessel and Neumann functions,

respectively, and Cl
i �i � 1, 2� are the standard spherical tensors. Relativistic units h̄ � c � 1 are used together with

the fine-structure constant a. The index n runs over the entire spectrum of the Dirac equation in the external nuclear
field.

The matrix elements �ajŜ�l�
f ja� represent the mass counterterms in the framework of the partial-wave renormalization

method [7,8]. Accordingly, the relevant counterterms for Eq. (2) read
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where Dqp � Eq 2 Ep . The states jp� and jq� denote
the spherical-wave solutions of the free-electron Dirac
equation. Integration over p is interpreted as integration
over the energies Ep � 6

p
m2

e 1 p2, where me is the
electron mass, and p is the absolute value of the electron
momentum. The summation over angular quantum num-
bers is also implicitly assumed. The free-electron wave
functions are normalized to d functions in the energy
variable. Equations (1)–(3) are also valid for arbitrary
electron states ja� as well as for nondiagonal matrix ele-
ments of the type �ajŜ�Ea�jn� provided that ja� refers to
the ground state.

In Refs. [9,10] the B-spline approach [15] has been
employed to approximate numerically the sums involved
in Eq. (2) and the integrals over q and p in Eq. (3). The
following set of parameters was chosen: The number of
grid points was N � 140, the order of splines k � 9, and
the number of partial waves s � 16 [9]. The accuracy
achieved in Ref. [9] compared to the exact results of Mohr
[16] for the pointlike nuclei was found to be 0.1% for
Z � 10 and 0.001% for Z � 92.

The renormalized expression for the energy shift due to
the SESE (a) correction can be expressed as [2,3]

DEirr
a �

X̀
l1,l2�0

0X
n

�ajŜ�l1�
b �Ea�jn�ren�njŜ�l2�

b �Ea�ja�ren

Ea 2 En
.

(4)

It involves two independent summations over partial
waves (l1, l2) and a summation over the complete Dirac
spectrum for electrons (n) in the external field of the
nucleus, where the prime indicates that the term with
En � Ea is excluded. For the evaluation of the matrix
elements involved, formulas (2) and (3) can be applied.
In total we have to perform threefold (or even fourfold, for
counterterms) summations over the spline Dirac spectrum.

The minimal set of parameters for the numerical spline
calculations was chosen to be N � 28, k � 9, and s � 7,
2313
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TABLE I. Convergence of the partial contributions
P

l DE
�l�
1s in the first-order self-energy

correction DE1s for Z � 10. The number of the grid points was chosen to be N � 28.

Even Odd DE1s �eV�
l

Pl
l0�0 DE

�l0�
1s �eV� l

Pl
l0�0 DE

�l0�
1s �eV� This work Ref. [16]

0 0.1269 1 0.1769 0.1688 0.1566
2 0.1615 3 0.1715
4 0.1659 5 0.1702
6 0.1672
while in Ref. [3] N � 50 and 12 # s # 40. However, in
our approach even this minimal set allowed us to keep the
controlled accuracy better than 10%. The convergence
of our method for the SE correction (1) is exemplified
in Table I for the ground state of the ion with Z �
10. The accumulated sums of partial-wave contributionsPl

l0�0 DE
�l0�
1s for odd and even l values have been assumed

to converge to a common limit. The accuracy of the
calculation amounts to 7.8% for the minimal basis set.

We should stress that within our approach, unlike the
potential expansion method [3], no cancellations and no
loss of accuracy occur for small values of Z. However,
the numerical stability becomes poorer in the low-Z
region, which is a distinct but less dangerous numerical
problem. The loss of stability for small Z values arises
because we generate the spline spectrum in a large spatial
box with the same minimal number of the grid points
(N � 28). For Z � 1 and 2, the inaccuracy turned out
to be above the prescribed limit of 10%.

The results of our calculations of the SESE (a) cor-
rection (4) for the 1s-ground state are given in Table II.
For Z � 70, 80, and 92, our results coincide rather well
with those presented in Refs. [2,3]. The mean deviation is
about 1.5%, while the corrresponding energy shifts listed
in [2] and [3] coincide with each other within three digits.
However, for Z � 20 the deviation from Ref. [3] amounts
to about 50%, and for Z � 10 it is as large as 70%.
TABLE II. Comparison of the SESE (a) correction for the 1s ground state with previous
calculations.

DEirr
1s �eV� Girr

1s

Z Ref. [2] Ref. [3] This work Ref. [3] This work

3 20.6237 3 1027 20.2913 3 1027 24.50 22.101
4 20.2786 3 1026 20.1351 3 1026 24.77 22.311
5 20.8792 3 1026 20.4431 3 1026 24.931 22.485
6 20.1153 3 1025 22.599
7 20.4808 3 1025 20.2584 3 1025 25.016 22.694
8 20.4972 3 1025 22.659
9 20.8903 3 1025 22.642

10 20.2796 3 1024 20.1483 3 1024 24.9016 22.601
20 20.7525 3 1023 20.4688 3 1023 24.1217 22.568
30 20.3454 3 1022 22.491
50 20.4407 3 1021 22.472
70 20.2283 20.2282 20.2314 22.3804 22.413
80 20.4474 20.4472 20.4512 22.3923 22.413
92 20.9712 20.9706 20.9599 22.581 22.553
To control the stability of our numerical procedure,
we compared the results calculated with a different order
of splines k but keeping the number of grid points N
and the number of partial waves s fixed. For k � 4,
the deviation from the results obtained in basis set with
k � 9 is increased from 1.5% for Z � 92 up to 9.5% for
Z � 3. In view of the adopted 10% inaccuracy limit, the
results for Z � 1, 2 have to be considered as unstable. In
consequence, we retained only the values for Z $ 3.

Let us now examine the question concerning the
perturbative nature of QED effects in the low-Z region.
For small values of Z we can compare the numerical
results for the SESE (a) correction with the known leading
terms of the Za expansion [12–14]. We present the
energy correction in the standard form:

DEirr
a � me

µ
a

p

∂2 �Za�5

n3 Girr
a �Za� , (5)

where n is the principal quantum number of the state ja�.
According to the Za expansion the following terms are
known for small Z values:

Girr
a �Za� � 2.29953 2

8
27

�Za� ln3�Za�22. (6)

The constant term in Eq. (6) has been derived in
Refs. [12,13] and the cubic logarithmic term has been
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FIG. 2. Different calculations for Girr
1s as a function of the

nuclear charge number Z.

deduced in Ref. [14]. The results of our numerical
calculation for the Girr

1s function are indicated in Table II
and Fig. 2. The function Girr

1s obtained in Ref. [3] is
depicted in the same figure. In addition, we also plot
the results of the nonrelativistic limit (6). To determine
whether our results are compatible with the nonrelativistic
limit (6), we tried to use an expression incorporating a
quadratic logarithmic term:

G̃irr
1s � 2.299 53 2

8
27

�Za� ln3�Za�22

1 C�Za� ln2�Za�22. (7)

In order to determine the coefficient C, we require the
condition G̃irr

1s � Girr
1s for different values of Z, where

Girr
1s signifies the exact numerical function. For the range

3 # Z # 20 we obtained nearly the same value for the
coefficient C. Averaging over Z yields C � 21.0 6 0.1.
We also display in Fig. 2 the curve corresponding to
Eq. (7) with the coefficient C � 21 deduced from the
matching prescription described above. The magnitude of
the coefficient reveals that our results are consistent with
the Za-expansion perturbation theory [12–14]. A more
detailed comparison with the outcome obtained in Ref. [3]
indicates that the total difference results from the sum
over negative-energy states in Eq. (4) [17]. The reason
for this discrepancy could be not only the difference in the
spline spectrum but also the difference in the evaluation of
the off-diagonal self-energy for the negative-energy states.
The latter part is very difficult to compare explicitly since
the methods employed here for the evaluation and those
used in Ref. [3] are quite different. In summary, we
can state that our numerical results presented for low-
Z systems are consistent with existing results obtained
from Za expansions and that there is no indication for
a nonperturbative nature of the electron self-energy in the
low-Z limit.
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