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A solution is presented to the simplest problem involving the vacuum backreaction on a pair-creating
source. The backreaction effect is nonanalytic in the coupling constant and restores completely the
energy conservation law. The vacuum changes the kinematics of motion, as relativity theory does, and
imposes a new upper bound on the velocity of the source.

PACS numbers: 12.20.Ds
The phenomenon of the vacuum instability caused by
nonstationary external fields received much attention ow-
ing to its significance in the black hole physics (see the
references in [1]), but the phenomenon itself is quite gen-
eral. A charged source of a nonstationary field is capable
of creating from the vacuum real particles having the same
type of charge (electrical, gravitational, etc.). When the
frequency of the source exceeds the threshold of pair cre-
ation, it emits a flux of energy and charge carried by the
created particles. However, the problem with external field
is physically incomplete since it does not answer the ques-
tion where the energy of the created particles comes from.
It is clear that the vacuum particle production is only a
mechanism of the energy transfer. The energy comes ul-
timately from the source of the external field, and there
emerges a question: how much energy can be extracted
from a source through the vacuum mechanism?

An attempt to answer this question without taking into
account the backreaction of the vacuum on the motion of
the source leads only to a contradiction with the energy
conservation law. The radiation of black holes is only one
(although the most glaring) example. Typically, the radia-
tion rate grows unboundedly with the energy of the source,
and, at a sufficiently high energy, the source appears to give
more than it has. This is the case even in QED [1,2].

Of course, one expects that the corrections stemming
from the self-consistent equations for the expectation val-
ues of the field will remove the contradiction, but one
should realize that the vacuum radiation is a purely quan-
tum effect, and, therefore, a quantum correction to the
external field will result only in a higher-order correction
to the radiation energy. The backreaction effect capable
of restoring the energy conservation law can only be non-
analytic in the coupling constant.

Below I present the solution of the self-consistent prob-
lem for the simplest model of a pair-creating source. The
question receives an answer but the significance of this
answer seems to surpass the significance of the question.

The model is an electrically charged spherical shell
expanding in the self field. Below, r � r�t� is the law
of expansion of the shell, e and M are, respectively, the
full charge and mass of the shell, and E is its energy
in excess of the rest energy (c � 1). It is assumed that
0031-9007�99�83(12)�2297(3)$15.00
before some time instant t � tstart the shell was kept at
the state of maximum contraction r � rmin and next was
let go. The world line of the shell is shown in Fig. 1.

Since the shell moves with acceleration, it creates par-
ticles from the vacuum. It radiates at a short stage of its
evolution near t � tstart where the acceleration is maxi-
mum. The bigger the energy E , the bigger is this accel-
eration, and the more violent is the creation of particles.
Therefore, it is interesting to consider the ultrarelativistic
shell �E �M� ¿ 1.

Without predetermining the law of motion r�t�, one
may assume that the shell expands monotonically with an
increasing velocity which at t � ` reaches some finite
value �r�`�. Then �r�`� may serve as a measure at late time
of the acceleration at tstart. As �E �M� ! `, the velocity
�r�t� approaches 1 at all t except in a small sector near
t � tstart. The world line of the shell approaches then the
broken line in Fig. 1. These assumptions are valid for the
classical motion of the shell, and they cannot be invalidated
by the quantum corrections since these corrections are
small.

Let DE and De be the energy and charge emitted by
the shell for the whole of its history. Using the methods

FIG. 1. The world line of the shell on the r , t plane. The
broken line is the outgoing light ray.
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of Refs. [1,2], these quantities can be calculated with an
arbitrary law of motion r�t�. For the ultrarelativistic mo-
tion under the assumptions above the result is [In the high-
frequency approximation [2] which in the present case is
provided by the condition �E�M� ¿ 1, the radiation flux
does not depend on the mass of the vacuum particles.]
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where O�1� denotes the terms that remain finite as �r�`� !
1, and k2 . 0 is the constant of coupling of the electro-
magnetic field of the shell to the vacuum charges (8 times
the fine structure constant for the electron-positron vac-
uum). Inserting in (1) the �r�`� calculated from the clas-
sical law of motion
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one obtains the result
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which manifestly contradicts the energy conservation law.
The self-consistent problem to be solved for obtaining

the correct result is as follows. Any spherically symmetric
electromagnetic field is determined by a single function
e�t, r�, which is the charge contained at the time instant t
inside the sphere of radius r . In terms of this function,
the electric field E and electromagnetic current ja are,
respectively, of the form
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The e�t, r� must satisfy the condition of regularity of the
electric field at r � 0, e�t, 0� � 0, and the normalization
condition e�t, `� � e. With these boundary conditions
one is to solve the expectation-value equations
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with the retarded resolvent 1��m2 2 �� [1,2]. [The
spectral-mass function in Eq. (6) is the one for the stan-
dard loop [1,2] but the detailed form of this function is
unimportant. Its important properties are positivity, the
presence of a threshold, and the behavior at large spectral
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mass.] In (5) and (6), m is the mass of the vacuum par-
ticles, and ja

bare is expressed through

ebare�t, r� � eu���r 2 r�t���� (7)

by the same formula as in (4). The set of equations is
closed by adding the equation of motion of the shell
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where, as appropriate for the charged surface, the force
exerted on the shell is determined by one-half of the sum
of the electric fields on both sides of the shell:

e6�t� � e���t, r�t� 6 0��� . (9)

Reserving the procedure of solving for an extended
publication, I present only the final result. The solution
for the force in (8) is
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Since k2 is small, and O�1� is uniformly bounded, the term
k2O�1� in (10) can be discarded. The force of the vacuum
backreaction depends on the velocity. Nevertheless, the
equation of motion (8) with this force admits the energy
integral:
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which at k2 � 0 goes over into the classical law (2).
There is no problem with the singularity of the integral
in (11). It is never reached. As in (2), for a given energy,
the velocity �r reaches its maximum value at r � ` but
the value is now different:
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As in (2), �r�`� grows with E�M but not up to 1:
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and this is the principal consequence of the vacuum
backreaction.

The insertion of (13) in (1) restores the conservation
laws:

DE

E
�

De
e

�
1
2

1 k2O�1�,
E

M
! ` . (14)

Up to 50% of energy and charge can be extracted from a
source by raising its initial energy. But the main result is,
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of course, (11). The vacuum does not change the electric
potential as one could expect. It changes the kinematics
of motion as relativity theory does. Furthermore, within a
given type of coupling, this change is universal. It does
not depend on the parameters of the source, only on the
coupling constant k2. The vacuum appears as a medium
in which the velocity of light is less than c, but there is one
special thing about this medium: it cannot be escaped.

Like the vacuum radiation itself, its backreaction is a
semiclassical effect, and the avoidance of the ultravio-
let problem deserves a note. This problem manifests it-
self in the fact that the distribution e�t, r� that solves
the expectation-value equations is singular on the shell’s
surface:
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(Fig. 2). Nevertheless, the force exerted on the shell is
finite and is unambiguously obtained by making the sum
(10) in the spectral integral. This is equivalent to giving
the shell a Compton width. The ultraviolet problem con-
cerns the spacelike vicinity of the shell but not its motion.
It is important that the infinite jump of e�t, r� across the
shell is constant. Owing to this fact, the fluxes across the
shell are finite, and so is the force of their backreaction.

Another object of worry is the vicinity of r � 0 since
rmin � �e2�2E � while E increases. However, one can
consider two procedures of raising the energy: keeping e
fixed and keeping rmin fixed. Only in the first case does
the shell probe small scales whereas the results above are
the same in both cases. The details of radiation at early
FIG. 2. The distribution e�t, r� for a given t.

time may be sensitive to the small scales but the resultant
distribution of charges at late time may not.
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