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Renormalization Group, Entropy Optimization, and Nonextensivity at Criticality
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The scaling properties of pair correlations at criticality are reproduced through an equivalence
between random walk distributions and order parameter correlations. The shift from Gaussian to fractal
walks with self-similar clusters corresponds to the changeover from a Gaussian to a nontrivial fixed
point with nonvanishing dimensional anomaly. We show that the renormalization group trajectories
lead to fixed points of minimum entropy, and use the Tsallis entropy index q to measure nonextensivity
as behavior departs from Gaussian.
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Our undertaking in this Letter is to demonstrate the
connection that exists between the extremal properties of
entropy expressions and the renormalization group (RG)
approach when applied to systems with scaling symmetry.

Because of its central place in the foundation of statis-
tical mechanics, the maximum entropy formalism is per-
haps the most familiar procedure for obtaining distribution
functions of both common and complex statistical prob-
lems [1]. Because of its power and elegance there has been
considerable interest in identifying suitable constraints that
would permit the application of the variational technique
to a wider set of systems [2]. Among these stands out the
class of problems involving sums of random independent
variables that display long-tailed distributions and self-
similarity under rescaling, i.e., those characterized by the
Lévy distributions that have divergent integer moments of
the order of 2 or higher. It has been noted [2] however
that the auxiliary condition required to maximize the ordi-
nary Boltzmann-Gibbs-Shannon (BGS) entropy expression
to obtain these distributions has an inadequate complicated
form. Yet, when the nonextensive generalized entropy [3]
is considered, simpler constraints, similar to the familiar
constancy of the second moment, yield distributions with
the same large-argument asymptotic behavior of the Lévy
distributions [4,5]. The departure of the Lévy distribution
from the Gaussian can then be associated to a degree of
nonextensivity of the random process as measured by the
generalized entropy.

A random walk in continuum space with jump lengths
governed by a Lévy distribution, a Lévy flight, is a pro-
totypical example of self-similarity. And an admirable
construction of the analog of this walk on a lattice [2,6,7]
exhibits very evidently the scaling property since the tra-
jectories are shown to consist of a hierarchy of self-similar
clusters of visited sites. These sets of sites have a frac-
tal dimension fixed by the strength of the power-law de-
cay of the step distribution, and self-similar clustering and
non-Gaussian behavior is seen to require the divergence
of the second moment of this distribution. Interestingly,
the design given to the walk assigns the form of the con-
tinuous nondifferentiable function of Weierstrass to the
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structure function or Fourier transform of the step distri-
bution. And, remarkably, the nonanalytic features of this
function, responsible for the non-Gaussian characteristics
of the walk, have been shown [6,7] to be analogous to the
singular behavior displayed by thermodynamic properties
in ordinary critical phenomena. The structure function for
the walk satisfies a functional equation with a scaling prop-
erty equivalent to that of the transformation equation for
the free energy of a spin system under the renormalization
group.

The close relation between the concepts of renormaliza-
tion and self-similarity has made the RG theory the lead-
ing application over the last decades of scaling symmetry
in phase transitions and many other problems in statisti-
cal physics, in nonlinear dynamics, and in other fields [8].
There is a characteristic craft or adeptness element in the
now ubiquitous RG theories, since for every chosen con-
struction, the RG transformation can be suitably or unsuc-
cessfully designed, and in practice a good implementation
would be that which results in critical RG flow lines that
terminate at a meaningful nontrivial fixed point [8]. In
this theory the guiding quality of a variational approach is
apparently lacking.

The three themes, extremal entropy, self-similarity, and
RG theory were highlighted in Ref. [2] where one of the
examples chosen as an illustration was the Lévy flight and
its lattice random walk analog. Here we make use of the
same lattice walk to describe the critical phenomena in a
lattice gas or Ising model, a connection that can be ex-
hibited through the existing analogy [9] between a ran-
dom walk and the Ornstein-Zernike relation for the pair
correlation functions in a fluid or magnet [10]. The main
points in our analysis are (1) the RG method is applied to
the random walk problem to obtain the fixed point scal-
ing properties of the step distribution p�l�. (2) The rela-
tionship between p�l� and the direct correlation function
c�l� of the statistical-mechanical model is used to asso-
ciate the random walk properties with those of the pair
correlations at criticality. (3) The anomalous dimension
at criticality is identified with the index m of the Lévy dis-
tribution, and the parameter q in the Tsallis entropy is used
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as a measure of the nonextensivity associated to the non-
Gaussian fixed point. (4) The entropy function, for both
its ordinary and generalized forms, is found to decrease
monotonically as the RG transformation flow advances
to the fixed point where it attains its minimum value.

To begin, we consider a generalization of a symmetric
one-dimensional random walk [2,6,7] where the probabil-
ity Pn�l� of occupancy of site l after n steps is generated
from the initial condition P0�l� via the recursion relation
Pn�l� �

P`
l0�2` pr �l 2 l0�Pn21�l0�, and choose the step

distribution pr �l� to be

pr �l� �
Ar

2

rX
n�0

an�dl,2bn 1 dl,bn� . (1)

The walks are made out of sets of unevenly spaced step
lengths bn, b . 1, with probabilities proportional to an,
the range of the step lengths is br , and Ar normalizes pr �l�,
i.e., A21

r �
Pr

n�0 an. The structure function lr �k� �P
l pr �l� exp�ikl� for these walks is

lr �k� � Ar

rX
n�0

an cos�bnk� . (2)

The special case an � a2n, a . 1, in the limit r ! `, de-
noted here p

m
` �l�, was analyzed in Refs. [6] and [7]. With

this choice the step distribution acquires a power-law de-
cay, p

m
` �l� � A`l2m, A` � 1 2 a21, m � lna� lnb, and

when this is sufficiently slow, i.e., m , 2, the mean-
squared displacement per jump diverges. As mentioned,
the structure function l

m
` �k� becomes the continuous non-

differentiable function of Weierstrass, and its nonanalytic
small-k behavior was demonstrated to arise from an infinite
sum of regular terms obtained by iteration of the scaling
equation

l
m
` �k� � a21l

m
` �bk� 1 A` cosk . (3)

When m # 2 the singular part of l
m
` �k� is of the form

Q�k� jkjm with Q�k� periodic in ln jkj with period lnb. The
connection with the Lévy distributions was exhibited and
the fractal dimension of the walks was determined to be
given by m # 2 [6,7]. To illustrate these features it is
sufficient to define the model in one dimension although a
multidimensional space lattice can be equally used, while
the spacing between step lengths given by bn is convenient
when describing the power law l2m. It has been shown
[6] that in the continuum limit of this walk a Lévy flight of
dimension m� is recovered, where m� � limD!0lna� lnb
with a � 1 1 aD 1 o�D�, b � 1 1 bD 1 o�D�, and
where D is the lattice spacing. Thus, while a Lévy
distribution decays for large distances x � limD!0Dl as
jxj2m�21 its discrete analog behaves as jlj2m.

We introduce next the RG transformation a0
n �

R�an� � aan11 for our family of walks. This transfor-
mation maps the sites l � bn11 into the sites l0 � bn

(therefore eliminating intermediate lattice space between
allowed step lengths) and then renormalizes the step
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probability by a restoring factor a. It is clear that the
Weierstrass walk p

m
` �l� and the simple nearest-neighbor

step walk p0�l� are both fixed points of R. The first
one is nontrivial in the sense that it is associated to an
infinite-ranged step distribution that can be reached via
the RG transformation only from other infinite-ranged
step distributions p`�l� required to approach asymptoti-
cally the condition an � a2n, n ! `. The distributions
p`�l� span the “critical hypersurface” and the quantities
an � an 2 a2n are the irrelevant variables that vanish
as R is repeatedly applied. The other fixed point p0�l� is
trivial since it is generated by the application of the RG
transformation to any “noncritical” finite-ranged pr �l�,
r , `.

Now consider the order-parameter fluctuation dr�l� �
r�l� 2 r about a uniform state r, again on a one-
dimensional lattice of site positions l, and an effective
Hamiltonian (divided by kBT ) of the form H � �1�2� 3P

l0,l00 C�l�dr�l0�dr�l00�, where C�l� � dH�dr�l0�dr�l00�
depends only on l � jl0 2 l00j when evaluated at r�l0� �
r�l00� � r. The kernel C�l� is simply related to the
so-called direct correlation function c�l� via C�l� �
dl,0r21 2 c�l�. We write c�l� as

c�l� � c0dl,0 1 c1Ar

rX
n�0

an�dl,2bn 1 dl,bn� . (4)

In this way H has the lattice analog form for a Landau
free energy where the nearest-neighbor term n � 0 cor-
responds to the square-gradient term for a coarse-grained
fluctuation dr�l� � rz �l�. In terms of the Fourier
component rez �k� of dr�l� one has H � �1�2�r2 3R

dk eC�k�ez �k�ez �2k�, where eC�k� � w�1 2 zlr �k�� with
w � r21�1 2 rc0�, z � 2rc1�1 2 rc0�21. The consid-
eration of the limit r ! ` of an infinite-ranged c�l� with
a power-law decay introduces a critical point behavior in
the system. We have chosen a one-dimensional lattice in
order to match the statistical-mechanical system with the
random walk model. The customary RG methods can be
applied to H, however we can readily recognize that this
model for the critical state of a simple fluid or spin system
can be related to the random walks with self-similar
clusters described above and studied in Refs. [6] and [7].

The Ornstein-Zernike equation h�l� � c�l� 1 r
P

l0 3

c�l0�h�l 2 l0� relating the total pair correlation h�l� with
c�l� can be put into correspondence [9] with the equation
for the generating function P�l; z� �

P
n Pn�l�zn of a lat-

tice random walk P�l; z� 2 z
P

l0 p�l0�P�l 2 l0; z� � dl,0,
[11]. The equivalence requires that the weight factor z is
given as above and that w � r21�1 2 r�21P�0; z�. The
correlations for l fi 0 are given by c�l� � wzp�l� and
r2h�l� � w21P�l; z�. The divergence of the susceptibil-
ity [9] x � �1 2 r� �rP�0; z� �1 2 z��21 indicates that
the critical point is attained when z � 1, and one can easily
establish through the equivalence between h�l� and P�l; z�
that the anomalous dimension exponent h is h � 2 2 m.
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In Fourier space eh�k� � �1 2 zlr �k��21 and at the criti-
cal fixed point eh�k� � jkj2m when z � 1 and k ! 0. The
convolution between p�l� and P�l; z� in the generating
function equation indicates that P�l; z� is built from terms
containing all multiplefold convolution products of p�l�,
and implies that the fixed point h�l� is closely associated
to the particular form of the Lévy distributions in the con-
tinuum limit of space and time obtained from the general-
ized central limit theorem [12]. It should be kept in mind
that the formal equivalence here employed is between the
correlations of nonindependent degrees of freedom in a
statistical-mechanical system and the distributions of ran-
dom independent variables of a stochastic process.

We proceed to evaluate the entropy of the step distri-
bution pr �l� along two representative types of RG trajec-
tories: (i) A noncritical trajectory starting with a truncated
power-law distribution

p�1�
r �l� � �Ar�2�

rX
n�0

a2n�dl,2bn 1 dl,bn� (5)

that flows under R into the trivial fixed point p0�l�. And
(ii) a critical trajectory with a starting infinite-ranged
distribution

p�2�
m �l� � �Am�2�

mX
n�0

an�dl,2bn 1 dl,bn�

1 �Am�2�
X̀

n�m11

a2n�dl,2bn 1 dl,bn� (6)

that flows under R into the nontrivial fixed point p
m
` �l�.

For p
�1�
r �l� the BGS expression S1 � 2kB

P
jlj p�l� lnp�l�

(for lattice coordination number independence we chose
the entropy sums to be over jlj) yields

k21
B Sr

1 �p�1�� � ln
1 2 er11

1 2 e
2

e lne

1 2 e

1
�r 1 1�er11 lne

1 2 er11 , (7)

for all m with e � a21. Whereas the generalized Tsallis
entropy [3] Sq � kB�q 2 1�21�1 2

P
jlj�p�l��q	, that is

nonextensive for q fi 1 but reduces to the customary
extensive expression when q � 1, [3] gives

Sr
q�p�1�� �

kB

q 2 1

∑
1 2

�1 2 e�q

1 2 eq

1 2 eq�r11�

�1 2 er11�q

∏
, (8)

again for all m. The fixed point p0�l� has a vanishing
entropy S0

q � 0 for all q, and by taking the limit S`
q �

limr!`Sr
q we obtain for the nontrivial fixed point

S`
q �

kB

q 2 1

∑
1 2

�1 2 e�q

1 2 eq

∏
(9)

with

S`
1 � kB

∑
ln

1
1 2 e

2
e lne

1 2 e

∏
. (10)

For all q $ 1 and all r . 0 we find (since eq�r11� ,

qer11, 0 , e , 1) that S0
q , Sr

q , S`
q , therefore the
entropy along the RG flow is monotonously decreasing
and vanishes at the trivial fixed point.

The case for p
�2�
m �l� is a little more complicated and we

present results when the deviation from p
m
` �l�, dpm�l� �

�Am�2�
Pm

n�0 an�dl,2bn 1 dl,bn�, is small. The expression
S1 � 2kB

P
jlj p�l� lnp�l� yields

k21
B Sm

1 �p�2�� � ln
1 2 dm

1 2 e

2

∑
e�1 2 dm�

1 2 e
2 gm

∏
lne 2 dm ,

(11)

for all m, where we have kept only the linear terms dm �P
l dpm�l� � Am

Pm
n�0 an and gm � Am

Pm
n�0 nan.

The generalized expression Sq � kB�q 2 1�21�1 2P
jlj�p�l��q	 under the same condition gives

Sm
q �p�2�� �

kB

q 2 1

∑
1 2

�1 2 e�q

1 2 eq �1 2 dm�q

2 q�1 2 e�q21�1 2 dm�q21gm

∏
,

(12)

again for all m, where now gm � Am
Pm

n�0 e�q21�nan.
Under the constraint

Pm
n�0 nan �

Pm
n�0�n 1 1�a21an,

that contains as a special case the fixed point condition
an � aan11, we find for all q $ 1 and all m . 0 that
Sm

q . S`
q . Therefore the entropy along the RG flow is

monotonously decreasing and attains a minimum at the
nontrivial fixed point.

Finally, the moments 
ln�r
q �

P
jlj l

n�p
�1�
r �l��q are

given by


ln�r
q �

∑
1 2 e

1 2 er

∏q 1 2 e�q2n�m�r

1 2 eq2n�m
, (13)

so that 
ln�`
q is finite and given by 
ln�`

q � �1 2 e�q�1 2

eq2n�m�21 provided q . n�m, but diverges otherwise. In
particular, the mean-square displacement 
l2�`

1 diverges
when m # 2, but 
l2�`

q is finite when m # 2 with q . 1.
The limiting value of q for the convergence of 
l2�`

q
is q � 1 for m . 2, and q � 2�m for m # 2 and this
choice of the parameter q provides a convenient measure
of nonextensivity at the critical point. Thus, the Gauss-
ian nonfractal behavior obtained when m . 2 is extensive,
whereas the Lévy-type fractal behavior for m # 2 is in-
creasingly nonextensive as the anomalous dimension expo-
nent h � 2 2 m departs from zero. Interestingly, 
l2�`

1 �

A`

P
l l22m, m . 2 and 
lm�`

2�m � A
2�m
`

P
l lm22, m # 2.

In summary, we have shown that an RG transformation
applicable to a random walk process with cluster forma-
tion but also to criticality in a simple fluid or spin system is
associated to a monotonously decreasing entropy function
that becomes minimum under an appropriate constraint at
the fixed point. This result might be anticipated in view
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of the structureless power-law character of the fixed point
distribution as compared with other infinite-ranged distri-
butions with nonvanishing irrelevant variables. We have
identified the fixed point step distribution p

m
` �l� � A`l2m

with that employed before [6,7] to obtain walks with self-
similar clusters and the fractal behavior of Lévy-type distri-
butions. The departure of this distribution from Gaussian
behavior when m , 2 gives rise in the equivalent direct
correlation function of the statistical-mechanical model to
a nonvanishing dimensional anomaly h and to nonexten-
sivity at criticality, the latter measured by the general-
ized Tsallis entropy index q. The links we have exhibited
among the various properties of scaling symmetry suggest
that the variational technique of optimal entropy may be of
practical importance to the RG applications.
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