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Measurement of the Density Matrix of a Longitudinally Modulated Atomic Beam

Richard A. Rubenstein, David A. Kokorowski, Al-Amin Dhirani, Tony D. Roberts, Subhadeep Gupta, Jana L
Winthrop W. Smith,* Edward T. Smith, Herbert J. Bernstein,† and David E. Pritchard

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
(Received 26 March 1999)

We present the first measurement of the longitudinal density matrix of a matter-wave beam. Using
a unique interferometric scheme, both the amplitude and phase of off-diagonal density matrix elements
were determined directly, without the use of traditional tomographic techniques. The measured
density matrix of a doubly amplitude modulated atomic sodium beam compares well with theoretical
predictions.

PACS numbers: 03.75.Be, 03.75.Dg, 39.20.+q
a

/

e

e
i
o

l

e
r

r

-

and

s
l,
In

ase
of
hes
a-
d
se
l

re-
ase
ith

m
ch
The determination of the density matrix, or equivalentl
the Wigner function, of an ensemble of identically pre
pared particles has long been a subject of interest in qu
tum measurement theory [1–3] because such distributio
contain the most complete description of the quantu
state of the system. Recent experiments in this rapid
advancing field have measured the density matrix and
Wigner function of photon states [4], the vibrational mod
of a diatomic molecule [5], and trapped ions [6]. In th
field of atom optics, the Wigner function for the transvers
quantum state of atoms passing through a double slit h
been measured tomographically [7].

In contrast to quantum state tomography (e.g., bas
on the inverse Radon transformation), newly propos
interferometric methods for determining a density matr
require fewer measurements and permit more straightf
ward density matrix reconstruction [8–11]. In this Letter
we realize the first interferometric scheme [8] ca
pable of measuring the phase as well as the amplitude
a longitudinal density matrix. Since we have previous
shown [12], using a phase-insensitive technique, that
supersonic beam has no nonzero, off-diagonal elemen
we first created a density matrix with off-diagonal struc
ture using two sequential amplitude modulators. We th
measured the amplitude and phase of this density mat
demonstrating excellent agreement with predictions.

Study of the longitudinal density matrix of an atomic
beam presents special challenges. Working in the ene
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basis with eigenketsjV� and corresponding energy eigen
valuesh̄V, the density matrix can be written as

r�V0, V0 1 Vcoh, t� � �V0 1 Vcohjc� �cjV0�

� ro�V0, V0 1 Vcoh�eiVcoh�t2to �,

(1)

where the overbar represents an ensemble average
ro is the density matrix at timeto. Because the density
matrix is intrinsically time dependent, with element
oscillating at a higher frequency the further off diagona
a time-dependent measurement scheme is required.
addition, the nonlinear vacuum dispersion relation

V�k� � h̄k2�2m (2)

for matter waves reflects the strong dependence of ph
velocity onk. Consequently, the finite energy spread
available atomic beams leads to dephasing which was
out any upstream amplitude modulation of atomic prob
bility [13,14]. The differentially detuned separate
oscillatory field (DSOF) technique overcomes the
difficulties by heterodyning high frequency off-diagona
density matrix elements to more easily detectable low f
quencies and by imparting a momentum dependent ph
shift [8,15,16] that reverses the dephasing associated w
matter-wave propagation.

In our experiment (see Fig. 1) an incident Na bea
[12,14] was first state selected by a two-wire Stern-Gerla
magnet, which transmitted only thejF � 1, mF � 0�
© 1999 The American Physical Society 2285
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state. The beam then encountered the two AM zones,
narrow oscillatory magnetic field regions separated by
Lc � 11.3 cm which were synchronously driven by
an amplitude modulated radio-frequency signal with a
modulation frequency vm � 2p 3 60.9 kHz (the carrier
frequency was vc � 2p 3 7.65 MHz). These regions
2286
transferred population from the initial j1, 0� state to both
the j1, 1� and j1, 21� states.

Solving the three-state resonance problem for the initial
plane wave ei�kox2Vot�j1, 0� propagating through the two
AM regions [17], we find the amplitude modulated j1, 0�
state wave function downstream of the second AM region,
jc�x, t�� � ��� cos���u1 sin�vm�x�y 2 �t 2 Lcx�y��	��� cos�u2 sin�vm�x�y 2 t��	

2 cosfB sin���u1 sin�vm�x�y 2 �t 2 Lc�y��	��� sin�u2 sin�vm�x�y 2 t��	���ei�kox2Vot�j1, 0� , (3)
where ui � � vRi li

y �, vRi is the Rabi frequency, li is the
length of the ith AM region, y is the atomic velocity, and

fB�z� �
mo

2h̄y

Z Lc

0
B�x, z� dx 2

vcLc

y
. (4)

The first term on the right-hand side of Eq. (4) denotes
the relative phase evolved between the j1, 0� and the j1, 1�
components in traveling between the AM regions, while
the second denotes the phase evolved by the oscillatory
field during this interval.

The amplitude modulated wave function of Eq. (3) pos-
sesses an infinite ladder of energy/momentum sidebands
[14], and leads to an energy basis density matrix of the
form of Eq. (1) with nonzero elements (or coherences)
only at Vcoh � 2nvm for integer n. The ensemble av-
erage includes an average over all atomic velocities and
over all possible trajectories through the two AM regions.
Variations in magnetic field B with the vertical coordi-
nate z between the two AM regions cause the phase fB

in Eqs. (3) and (4) to vary over more than 2p, eliminating
the second term on the right-hand side of Eq. (3) in the
ensemble average.

To explain our DSOF interferometer [14] deconvolu-
tion scheme, we consider an atomic beam with a den-
sity matrix of the form of Eq. (1), which contains two
plane wave components, both in the j1, 0� electronic state,
but with kinetic energy difference h̄Vcoh after it emerges

FIG. 1. Apparatus schematic. The atomic beam is state
selected by Stern-Gerlach magnet SG1. The resulting j1, 0�
state beam (solid line) travels through AM regions at x � 2Lc
and x � 0, which drive transitions to the undetected j1, 1� and
j1, 21� states (dotted lines). Oscillatory field regions at x1,2
with frequencies v1,2 drive hyperfine state changing transitions,
forming the DSOF interferometer. The j2, 0� state (dashed line)
is selected by a second Stern-Gerlach magnet SG2 and detected
using a Re hot wire.
from the second AM region at x � 0 (see Fig. 1). It
then propagates through two DSOF regions located at x1
and x2 � x1 1 L, where rf magnetic fields of frequen-
cies v1,2 drive j1, 0� ! j2, 0� hyperfine transitions with
resonance frequency vhf � 2p 3 1772 MHz. The beam
then propagates through a state selecting magnet, and the
j2, 0� state is detected at xd . This configuration is a lon-
gitudinal interferometer, in which the component of state
j1, 0� with kinetic energy h̄V0 excited to j2, 0� by v1 and
the h̄�V0 1 Vcoh� component excited by v2 can interfere,
producing a time-dependent beat at the detector with fre-
quency d 2 Vcoh, where

d � v1 2 v2 . (5)

We obtain the density matrix from a measurement of
P�d, d̃, t�, the total probability that an atom will reach the
detector in the j2, 0� state after passing through the double
AM and the DSOF as a function of d and the “scaled
detuning”

d̃ �
v2x2 2 v1x1

L
2 vhf . (6)

For the case of our fast atomic beam, the double Fourier
transform of P�d, d̃, t� with respect to time t and d̃

determines the complete density matrix [8]

ro�V0, V0 1 Vcoh� � A�V0�
Z

dd̃ e2id̃
p

mL2�2 h̄V0

3
Z

dt P�d, d̃, t�e2i�d2Vcoh�t,

(7)

where A�V0� is defined in Ref. [8].
The extremely large kinetic energy of our beam relative

to the energy shifts applied in the AM regions and the
DSOF (Vo ¿ vm, d) permits the use of a semiclassical
approximation to obtain a physically intuitive picture of
our deconvolution scheme. In this limit, the near field
approximation [13] to the quantum wave equation leads
to solutions in which the atom’s external motion follows
raylike classical trajectories, while its internal state evolves
quantum mechanically. Thus, the detection probability
P�d, d̃, t� is the ensemble averaged product of the double
AM transmission probability PAM [absolute value squared
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of Eq. (3) averaged over fB] and the DSOF transmission
probability PDSOF (calculated in Ref. [13]):

P�d, d̃, t� � �PAM 3 PDSOF�

�

øΩ X̀
n�2`

�Cn�u1, u2, V0�ei�2nvm�t2T���
æ

3
1
2

∑
1 1 cos

µ
d̃L

y
1

dxd

y
2 dt

∂∏¿
. (8)

The � � denotes an average over the initial energy distribu-
tion of the atomic beam (approximately Gaussian in veloc-
ity space with a mean of 1100 m�s and an rms width of
25 m�s). T � xd�y is the transit time of an atom from
the second AM coil to the detector. The coefficients Cn

arise from Bessel function expansions [18] of the sine and
cosine terms in Eq. (3).

To study an off-diagonal stripe of the density matrix
with Vcoh � 2Nvm [or equivalently a particular n � N
component of PAM�t�], we set d � 2Nvm, heterodyning
its time dependence down to dc. A sweep of the scaled
detuning d̃ (with d fixed) produces rephased Ramsey
fringes [14], whose Fourier transform with respect to d̃

yields the desired stripe of the density matrix. In the
semiclassical picture, the amplitude of this stripe is the
velocity distribution of the atoms in the beam with ei�2Nvmt�

time dependence, while the phase reveals whether atoms at
a given velocity arrived in or out of phase with the “clock”
set by the heterodyne signal cos�dt�.

We first probed the diagonal of the double AM density
matrix by setting d � 0, making the DSOF equivalent to a
standard separated oscillatory field experiment [19]. This
configuration yields Ramsey fringes (Fig. 2) centered at
the hyperfine resonance v1 � vhf . The Fourier transform
of these fringes with respect to d̃ gives the energy distri-
bution of the atomic beam as modified by the modulation,
i.e., the diagonal of the density matrix (Fig. 3a).

To obtain the off-diagonal elements of the density ma-
trix, we had to scan v1 and hence d̃, while maintain-
ing phase coherence between the two DSOF coils. We

FIG. 2. Ramsey fringes obtained by DSOF with d � 0. The
envelope of the fringes reflects the longitudinal atomic energy
distribution produced by the AM regions.
achieved this by using a single sideband modulator [20]
to generate from v1 a phase coherent signal at v2 �
v1 2 d. We set d � 2Nvm (for N � 1, 2, and 3) and ob-
served rephased Ramsey fringes which were displaced by
d�xd2x2�

L 
 2pN 3 0.6 MHz from vhf , where the white
fringe condition d̃L 1 dxd � 0 is satisfied at the detec-
tor [see Eq. (8)]. A Fourier transform of the fringes for a
particular N determined a stripe of the density matrix lo-
cated Vcoh � 2Nvm away from the diagonal (as well as
its complex conjugate at Vcoh � 22Nvm). At large de-
tunings the DSOF regions produce less than the ideal p�2
pulses assumed in Eq. (8), somewhat reducing the signal/
noise. This prevented us from measuring the weak off-
diagonal stripes for N . 3.

The amplitude of the density matrix, calculated from
an average of two data sets [a total of about 2 h of data
with a mean count rate of �8 10� 3 103 counts�sec] is
shown in Fig. 3a. The multiple peaks along V0 (parallel
to the diagonal) for a particular n � N stripe arise from

FIG. 3. Measured amplitude (a) and phase (b) of the double
AM density matrix with vm � 2p 3 60.9 kHz. The solid
lines represent the theoretical prediction. The amplitudes are
normalized to one for the unmodulated atomic beam. Overall
phase offsets have been subtracted from the phase data to
compensate for the random phase between sidebands.
2287
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the interference of plane wave components that accrue
relative phase shifts (by multiples of 2vmLc�y) while
propagating from the first to the second AM region. In
the semiclassical picture, these peaks reflect the velocity
selection of the two AM regions, which together transmit
only atoms whose transit times t � Lc�y are near
multiples of the modulation period Tmod � 2p��2Nvm�.

The phase of the density matrix is displayed in Fig. 3b.
The positive and negative phase regions correspond to
velocities in and out of phase with the DSOF heterodyne
signal. The overall slopes of the phases reflect the velocity
dependence of the transit time between the AM coils,
Lc�y. The relative phase between different Vcoh stripes
could not be directly determined because the phase of
our single sideband mixer was randomized each time the
heterodyne frequency d was changed.

A theoretical prediction for the density matrix was
obtained by calculating the Cn of Eq. (8) corresponding
to each stripe (i.e., for each 2nvm term) and multiplying
it by the initial energy distribution (obtained from an
SOF scan of the unmodified beam). By comparing the
measured phase of each density matrix stripe with that of
our prediction, we determined the phase offset of each
stripe, which we subtracted to obtain the comparison
displayed in Fig. 3b.

The excellent fits obtained required slight variations
of the Rabi frequencies vR1 and vR2 and the velocity
distribution of the beam. These variations were always
within the error of independent measurements of these
quantities: 
0.2% for the mean velocity, 
4% for the
velocity width, and 
10% for vR1 and vR2. The large
error in vR1,2 reflects the hysteresis in the AM driver
circuit [20].

We have employed a longitudinal DSOF interferometer
[14] to measure the density matrix of a doubly ampli-
tude modulated atomic beam in the longitudinal energy/
momentum basis. We found that this density matrix pos-
sesses the complex structure predicted theoretically both
along and off the diagonal. This work is the first experi-
mental demonstration of such a measurement (the subject
of several theoretical proposals [8,15,16]), and it extends
previous measurements of the density matrix and Wigner
function [4–7] to longitudinally coherent matter waves.

Future experimental realizations could improve the
phase control of the single sideband mixer which would
then allow direct determination of the relative phase be-
tween off-diagonal stripes of the density matrix. The
extension of this work to cold atom or Bose-Einstein
condensate beams [21,22], which possess low energies
and narrow energy widths, would allow the study of den-
sity matrices of these highly coherent quantum systems.
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