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Spin-Spin Interaction and Spin Squeezing in an Optical Lattice
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We show that, by displacing two optical lattices with respect to each other, we may prod
interactions similar to the ones describing ferromagnetism and antiferromagnetism in condensed m
physics. We also show that particularly simple choices of the interaction lead to spin squeezing, w
may be used to improve the sensitivity of atomic clocks. Spin squeezing is generated even
partially, and randomly, filled lattices, and our proposal may be implemented with current technolo
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Simulation of quantum many-body problems on a cla
sical computer is difficult because the size of the Hilbe
space grows exponentially with the number of particle
As suggested by Feynman [1], the growth in computation
requirements is only linear on a quantum computer [2
which is itself a quantum many-body system, and such
computer containing only a few tens of quantum bits ma
outperform a classical computer. A quantum comput
aimed at the solution of a quantum problem is expect
to be easier to realize in practice than a general purpo
quantum computer, because the desired solution is g
erned by physical interactions which are constrained, e.
by locality [1,3]. In essence, such a quantum comput
is a quantum simulator with the attractive feature that the
experimentalist can control and observe the dynamics mo
precisely than in the physical system of interest. In th
Letter we describe how atoms in an optical lattice ma
be manipulated to simulate spin-spin interactions whic
are used to describe ferromagnetism and antiferroma
netism in condensed matter physics. We also show th
with a specific choice of interaction we may generate spi
squeezed states [4] which may be used to enhance spec
scopic resolution [5], e.g., in atomic clocks. Our tasks a
achieved with only a few manipulations of the system an
may thus be performed within a time much shorter than t
coherence time of ground state atoms in optical lattices [

In Refs. [6,7] two different methods to perform a
coherent evolution of the joint state of pairs of atoms i
an optical lattice were proposed. Both methods involv
displacement of two identical optical lattices with respe
to each other. Each lattice traps one of the two intern
statesj0� and j1� of the atoms. Initially, the two lattices
are on top of each other and the atoms are assumed
be cooled to the vibrational ground state in the lattice
The lattice containing thej1� component of the wave
function is now displaced so that, if an atom (at the lattic
site k) is in j1�, it is transferred to the vicinity of the
neighboring atom (at the lattice sitek 1 1) if this is in
j0�, causing an interaction between the two atoms (s
Fig. 1). The procedures described in this Letter follow
the proposal in Ref. [6] where the atoms interact throug
controlled collisions. Also the optically induced dipole
0031-9007�99�83(11)�2274(4)$15.00
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dipole interactions proposed in [7] may be adjusted t
fit into this framework. After the interaction, the lattices
are returned to their initial position and the internal state
of each atom may be subject to single particle unitar
evolution. The displacement and the interaction with th
neighbor yields a certain phase shiftf on thej1�kj0�k11
component of the wave function; i.e.,

j0�kj0�k11 ! j0�kj0�k11 ,

j0�kj1�k11 ! j0�kj1�k11 ,

j1�kj0�k11 ! eifj1�kj0�k11 ,
(1)

j1�kj1�k11 ! j1�kj1�k11 ,

where ja�k (a � 0 or 1) refers to the state of the atom
at the kth lattice site. In [6] it is suggested to build a
general purpose quantum computer in an optical lattic
based on the two-atom gates in Eq. (1) and single ato
control, which is possible by directing a laser beam o
each atom. We shall show that, even without allowing
access to the individual atoms, the lattice may be used
perform a highly nontrivial computational task: simulation
of magnetism.

Our two level quantum systems conveniently describ
spin 1�2 particles with the two statesj0�k and j1�k

FIG. 1. (a) Two overlapping lattices trapping the two interna
statesj0� (black circle) andj1� (white circle). (b) The lattices
are displaced so that if an atom is in thej1� state, it is moved
close to the neighboring atom if this is inj0� causing an
interaction between the two atoms. (c) The lattices are returne
to their initial position, where the noninteracting atoms may be
driven by external fields.
© 1999 The American Physical Society
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representing jm�k � j21�2�k and j1�2�k , where states
jm�k are eigenstates of the jz,k operator jz,kjm�k � mjm�k

(h̄ � 1). The phase-shifted component of the wave
function in Eq. (1) is identified by the operator
�jz,k 1 1�2� �jz,k11 2 1�2�, and the total evolu-
tion composed of the lattice translations and the
interaction induced phase shift may be described
by the unitary operator e2iHt with the Hamiltonian
H � x�jz,k 1 1�2� �jz,k11 2 1�2� and time t � f�x.
In a filled lattice the evolution is described by the Hamil-
tonian H � x

P
k�jz,k 1 1�2� �jz,k11 2 1�2�, and if we

neglect boundary terms the Hamiltonian reduces to

Hzz � x
X
�k,l�

jz,kjz,l , (2)

where the sum is over nearest neighbors. By appropriately
displacing the lattice, we may extend the sum to nearest
neighbors in two and three dimensions. Hzz coincides with
the Ising-model Hamiltonian [8,9] introduced to describe
ferromagnetism. Hence, by elementary lattice displace-
ments, we perform a quantum simulation of a ferromagnet
(or antiferromagnet depending on the sign of x).

A more general Hamiltonian of the type

Hf �
X
�k,l�

xjz,kjz,l 1 hjx,kjx,l 1 ljy,kjy,l (3)

may be engineered using multiple resonant pulses and dis-
placements of the lattices: A resonant p�2 pulse acting
simultaneously on all atoms rotates the jz operators into jx

operators, eijy,kp�2jz,ke2ijy,kp�2 � jx,k . Hence, by apply-
ing p�2 pulses, in conjunction with the displacement se-
quence, we turn Hzz into Hxx , the second term in Eq. (3).
Similarly, we may produce Hyy , the third term in Eq. (3),
and by adjusting the duration of the interaction with the
neighbors we may adjust the coefficients x , h, and l to
any values. We cannot, however, produce Hf by simply
applying Hzz for the desired time t, followed by Hxx and
Hyy , because the different Hamiltonians do not commute.
Instead we apply a physical implementation of a well-
known numerical scheme: the split operator technique. If
we choose short time steps, i.e., small phase shifts f in
Eq. (1), the error will be only of order f2, and, by re-
peated application of Hzz , Hxx , and Hyy , we may strobo-
scopically approximate Hf .

For a few atoms the system may be simulated numeri-
cally on a classical computer. In Fig. 2 we show the
propagation of a spin wave in a one-dimensional string
of 15 atoms which are initially in the j21�2� state. For
illustrational purposes we assume that the central spin
is flipped at t � 0. The Hamiltonian (3) which can be
implemented without access to the individual atoms then
causes a spin wave to propagate to the left and right. The
figure shows the evolution of �jz,k� for all atoms, obtained
by repeatedly applying the Hamiltonians Hzz , Hxx , and
Hyy with x � h � l and periodic boundary conditions.
Small time steps dt � 0.1x21 result in a stroboscopic
FIG. 2. Propagation of a spin wave in a one-dimensional
string. The central atom is flipped at t � 0, and repeated
application of Hzz , Hxx , and Hyy results in a wave propagating
to the left and right. The figure shows the evolution of �jz,k�
for all atoms (k).

approximation almost indistinguishable from the results
of a direct numerical integration of Hf .

A host of magnetic phenomena may be simulated on
our optical lattice: spin waves, solitons, topological ex-
citations, two magnon bound states, etc. Models for
magnetic phenomena have interesting thermodynamic be-
havior, and we propose to carry out calculations for non-
vanishing temperature by optically pumping a fraction
of the atoms to the j1�2� state. The randomness of the
pumping introduces entropy into the system and produces
a microcanonical [9] realization of a finite temperature.
Other procedures for introducing a nonvanishing tempera-
ture are described in Ref. [3]. The results of the simu-
lation may be read out by optical diffraction of light,
sensitive to the internal atomic states. Although individ-
ual atoms may not be resolved, optical detection may also
be used directly to resolve magnetic structures on a spatial
scale of a few lattice periods.

We now show how to generate spin-squeezed states us-
ing the same techniques as discussed above. Signals ob-
tained in spectroscopic investigations of a sample of two
level atoms are expressed by the collective spin operators
Ji �

P
k ji,k , and their quantum mechanical uncertainty

limits the measurement accuracy, and, e.g., the perfor-
mance of atomic clocks. In standard spectroscopy with N
uncorrelated atoms starting in the j21�2� state, the uncer-
tainties DJx �

p
�J2

x � 2 �Jx�2 and DJy are identical, and
the standard quantum limit resulting from the uncertainty
relation of angular momentum operators

�DJx�2�DJy�2 $ j�Jz�2�j2 (4)

predicts a spectroscopic sensitivity proportional to 1�
p

N .
Polarization rotation spectroscopy and high precision
atomic fountain clocks are now limited by this sensitivity
[10,11]. In [4] it is suggested to produce spin-squeezed
states which redistribute the uncertainty unevenly between
components such as Jx and Jy in (4), so that measurements,
sensitive to the component with reduced uncertainty,
2275



VOLUME 83, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 13 SEPTEMBER 1999
become more precise. Spin squeezing resulting from
absorption of nonclassical light has been suggested [12]
and demonstrated experimentally [13]. Reference [4]
presents an analysis of squeezing obtained from the non-
linear couplings H � xJ2

x and H � x�J2
x 2 J2

y �. For
neutral atoms, such a coupling has been suggested in the
spatial overlap of two components of a Bose-Einstein
condensate [14]. Spin squeezing in an optical lattice
has two main advantages compared to the condensates:
The interaction can be turned on and off easily, and the
localization at lattice sites increases the density and thus
the interaction strength. The product J2

x involves terms
jx,kjx,l for all atoms k and l, and this coupling may be
produced by displacing the lattices several times so that
the j1�2� component of each atom visits every lattice
site and interacts with all other atoms. In a large lattice
such multiple displacements are not desirable. We shall
show, however, that substantial spin squeezing occurs
through interaction with only a few nearby atoms, i.e., for
Hamiltonians

H �
X
k,l

xk,ljx,kjx,l (5)

and

H �
X
k,l

xk,l�jx,kjx,l 2 jy,kjy,l� , (6)

where the coupling constants xk,l between atoms k and l
vanish except for a small selection of displacements of the
lattices [15].

Expectation values of relevant angular momentum op-
erators and the variance of the spin operator Ju �
cos�u�Jx 1 sin�u�Jy may be calculated for an initially un-
correlated state with all atoms in j21�2�, propagated by
the simple coupling (5). If each atom visits one neighbor
xk,l � xdk11,l, we get the time dependent variance of the
spin component J2p�4 � �1�

p
2� �Jx 2 Jy� by a lengthy,

but straightforward, calculation:

�DJ2p�4�2 �
N
4

∑
1 1

1
4

sin2�xt� 2 sin�xt�
∏

. (7)

The mean spin vector is in the negative z direction and
has the expectation value

�Jz� � 2
N
2

cos2�xt� . (8)

For small values of xt, DJ2p�4 decreases linearly with
xt, whereas j�Jz�j decreases proportional to �xt�2; hence,
DJ2p�4 falls below j�Jz�2�j, and the spin is squeezed.

In Fig. 3 we show numerical results for 15 atoms in
a one-dimensional lattice with periodic boundary condi-
tions. Figure 3(a) shows the evolution of �DJu�2 when
we apply the coupling (5) and visit 1, 2, and 3 neigh-
bors. We assume the same phase shift for all collisions;
i.e., all nonvanishing xk,l are identical. The squeezing
angle u � 2p�4 is optimal for short times xt ø 1. For
longer times the optimal angle deviates from 2p�4, and
we plot the variance �DJu�2 minimized with respect to
2276
FIG. 3. Squeezing in a one-dimensional lattice with 15 atoms.
(a) Evolution of �DJu�2 with the coupling (5) and interaction
with 1, 2, and 3 neighbors (full, dashed, and short-dashed line,
respectively). (b) The optimal value of the squeezing parameter
j2 obtained with the coupling (5) (�) and (6) (1).

the angle u. If �1�
p

2� �e2iu�2j1�2� 1 eiu�2j 2 1�2�� is
rotated into j1�2�, sub-binomial counting statistics of the
j1�2� population provides an easy accessible experimental
signature of squeezing in Ju .

In [5] it is shown that, if spectroscopy is performed
with N particles, the reduction in the frequency variance
due to squeezing is given by the quantity

j2 �
N�DJu�2

�Jz�2 . (9)

In Fig. 3(b) we show the minimum value of j2 obtained
with the couplings (5) and (6) as functions of the number
of neighbors visited. Figure 3(b) shows that the coupling
(6) produces better squeezing than (5). The coupling
(5), however, is more attractive from an experimental
viewpoint. Since all jx,k operators commute, we do not
have to apply several displacements with infinitesimal
durations to produce the desired Hamiltonian. We may
simply displace the atoms so that they interact with one
neighbor to produce the desired phase shift f, and then
go on to interact with another neighbor.

Similar to the analytic expression for j2 obtained from
(7) and (8), the results shown in Fig. 3(b) are independent
of the total number of atoms as long as this is much
larger than the number of neighbors visited. When all
lattice sites are visited, we approach the results obtained
in Ref. [4], i.e., a variance scaling as N1�3 and a constant
for the couplings (5) and (6).

So far we have assumed that the lattice contains one
atom at each lattice site and that all atoms are cooled
to the vibrational ground state. It has been suggested
that this may be achieved by filling the lattice from a
Bose-Einstein condensate [16]. The present experimental
status in optical lattices is that atoms can be cooled to
the vibrational ground state in 2D [17]. A mean filling
factor of unity in 3D is reported in [18], but when at
most a single atom is permitted at each lattice site a mean
occupation of 0.44 is achieved.

The interaction in a partially filled lattice may be
described by the Hamiltonian H �

P
k,l xk,lhk�jz,k 1

1�2�hl�jz,l 2 1�2�, where the stochastic variable hk is
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FIG. 4. Spin squeezing in a partially filled one-dimensional
lattice containing 15 atoms. (a) Evolution of �DJu�2 in a
lattice with a filling factor p � 50% and displacements to
1, 2, and 3 neighboring sites (full, dashed, and short-dashed
curve, respectively). Dotted lines represent the predictions from
Eq. (10). (b) Minimum attainable squeezing parameter j2 for
filling factors p � 100% (�), 50% (+), 25% (�), and 10% (3)
as functions of the number of sites visited.

1 �0� if a lattice site is filled (empty). If we displace the
atoms so that xk,l is symmetric in k and l, we produce the
Hamiltonian H �

P
k,l xk,lhkjx,khljx,l . This Hamiltonian

models magnetism in random structures, and it might
shed light on morphology properties, and, e.g., percolation
[19]. Here we shall restrict our analysis to spin-squeezing
aspects, since these are both of practical interest, and
they represent an ideal experimental signature of the
microscopic interaction.

In Fig. 4 we show the result of a simulation of squeez-
ing in a partially filled one-dimensional lattice. Each
lattice site contains an atom with a probability p, and
the size of the lattice is adjusted so that it contains
15 atoms. In Fig. 4(a) we show the decrease in the vari-
ance of Ju , averaged over 20 realizations and minimized
with respect to u. Lines indicate the predictions from the
time derivatives at t � 0:

d
dt

�DJ2p�4�2 � 2
1
2

X
k,l

xk,l�hkhl� , (10)

where �hkhl� denotes the ensemble average over the
distribution of atoms in the lattice, i.e., the two atom
correlation function. In Fig. 4(b) we show the minimum
value of j2 for different filling factors p as a function of
the number of neighbors visited. The calculations confirm
that, even in dilute lattices, considerable squeezing may be
achieved by visiting a few neighbors.

In conclusion, we have suggested a method to simulate
condensed matter physics in an optical lattice, and we
have shown how the dynamics may be employed to
produce spin squeezing. We emphasize the moderate
experimental requirement for our scheme. With the two
internal states represented as hyperfine structure states in
alkaline atoms, all spin rotations may be performed by
Raman or rf pulses acting on all atoms simultaneously,
and lattice displacements may be performed by simply
rotating the polarization of the lasers [7]. With the
parameters in [6], the duration of the sequence in Fig. 1
can be as low as a few microseconds. Following our
suggestion, spin squeezing may be produced in dilute
optical lattices, and implementation is possible with
current technology. The decrease in projection noise has
several promising applications in technology and quantum
physics, and it provides an experimental signature of the
microscopic interaction between the atoms.
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