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Entangled Bell and Greenberger-Horne-Zeilinger States of Excitons in Coupled Quantum Dots
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We show that excitons in coupled quantum dots are ideal candidates for reliable preparation of
entangled states in solid-state systems. An optically controlled exciton transfer process is shown to lead
to the generation of Bell and Greenberger-Horne-Zeilinger states in systems comprising two and three
coupled dots, respectively. The strength and duration of selective light pulses for producing maximally
entangled states are identified by both analytic and full numerical solution of the quantum dynamical
equations. Experimental requirements to build such entangled states are discussed.

PACS numbers: 03.67.–a, 71.10.Li, 71.35.–y, 73.20.Dx
Quantum information, quantum computation, quan-
tum cryptography, and quantum teleportation represent
exciting new arenas which exploit intrinsic quantum
mechanical correlations [1]. A fundamental requirement
for the experimental realization of such proposals is
the successful generation of highly entangled quantum
states. In particular, coherent evolution of two quantum
bits (qbits) in an entangled state of the Bell type is
fundamental to both quantum cryptography and quantum
teleportation. Maximally entangled states of three qbits,
such as the so-called Greenberger-Horne-Zeilinger (GHZ)
states [2], are not only of intrinsic interest but are also
of great practical importance in such proposals. New
systems and methods for the preparation and measurement
of such maximally entangled states are therefore being
sought intensively. Most of the theoretical and experi-
mental activity until now has been associated with atomic
and quantum-optic systems [3–5].

Solid-state realizations of such quantum-based phe-
nomena have received little attention despite the fact
that semiconductor nanostructures such as quantum dots
(QDs), with quantum-mechanical electron confinement in
all three directions, have been fabricated and studied by
many groups [6]. In addition, recent experimental work
by Bonadeo et al. [7,8] suggests that optically generated
electron-hole pairs (excitons) in semiconductor QDs rep-
resent ideal candidates for achieving coherent wave func-
tion control on the nanometer and femtosecond scales.

In this paper we give a detailed prescription for produc-
ing such entangled states in semiconductor quantum dot
systems. We show that the resonant transfer interaction
between spatially separated excitons can be exploited to
produce such entanglement, starting from suitably initial-
ized states. The system requirements are realizable in cur-
rent experiments employing ultrafast optical spectroscopy
of quantum dots.

When two quantum dots are sufficiently close, there
is a resonant energy-transfer process originating from the
Coulomb interaction whereby an exciton can hop between
dots [9]. Experimental evidence of such energy trans-
fers between quantum dots was reported recently [7]; the
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resonant process also plays a fundamental role in biological
and organic systems, and is commonly called the Forster
process [10]. Unlike usual single-particle transport mea-
surements, the Forster process does not require the physical
transfer of the electron and hole, just their energy. Hence,
it is relatively insensitive to effects of impurities which lie
between the dots. Consider a system of N (N � 2, 3, or 4)
identical, equispaced QDs containing no net charge, radi-
ated by long-wavelength classical light. Ignoring any con-
stant energy terms, the following Hamiltonian describes
the formation of single excitons within the individual QDs
and their interdot hopping:
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n ) is the electron (hole) creation operator in
the nth QD. The QD band gap is e while V represents
the interdot Coulomb interaction and, hence, the Forster
process. The dots are equidistant from each other, i.e.,
N � 2 dots on a line, N � 3 dots at the vertices of
an equilateral triangle, N � 4 dots at the vertices of a
pyramid; hence, V is not a function of n or n0. The time
dependence of E�t� describes the pulse shape, while the
magnitude includes the electron-photon coupling and the
incident electric field strength. The Hamiltonian can be
easily manipulated using quasispin operators:
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These satisfy the usual angular momentum commuta-
tion relationships: �J1, J2� � 2Jz , �J6, Jz� � 7J6. The
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Hamiltonian now takes the form

H�t� � eJz 2 V �J2 2 J2
z � 1 E�t�J1 1 E��t�J2 . (3)

H�t� contains a nonlinear term that can be exploited to
generate entangled states.

We consider a rectangular radiation pulse, starting at
time t � 0 with central frequency v, given by E�t� �
A cos�vt�: such a pulse is relatively straightforward to
achieve experimentally. The time evolution of any initial
state under the action of H in Eq. (3) is easily performed by
means of the pseudo 1�2-spin operator formalism [11,12].
Single transition operators are defined by

�ijJr2s
x jj� �
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where r 2 s denotes the transition between states jr� and
js� within a given J subspace. The three operators belong-
ing to one particular transition r 2 s obey standard angu-
lar momentum commutation relationships �Jr2s

a , Jr2s
b � �

iJr2s
g , where �a, b, g� represents a cyclic permutation of

�x, y, z�. Note that operators belonging to nonconnected
transitions commute: �Jr2s

a , Jt2u
b � � 0 with a, b � x, y,

or z. In order to gain physical insight into the dynamics
of such a multiexciton problem, some approximations are
necessary: a common assumption, valid when e ¿ V , is
the so-called rotating wave approximation U � e2ivJzt .
Suppressing rapidly oscillating terms, the Hamiltonian in
the rotating frame (RF) becomes

Hr � UyHU 1 i
dUy

dt
U � DvJz 2 AJx 2 V �J2 2 J2

z � ,

(5)

where Dv � e 2 v denotes the off-resonance condition.
We now show that this Hamiltonian leads to the generation
of entangled states from suitably initialized states.

Two coupled QDs: Bell states.—Here we describe
the light excitation procedure to obtain a maximally en-
tangled Bell state of the form jC� � j00� 1 eifj11� with
0 (1) denoting a zero-exciton (single exciton) QD. The
phase angle f can be arbitrary. In order to highlight
the physical aspects of the procedure, we first derive an
approximate analytical solution of the dynamical equa-
tion governing the system’s matrix density. Starting with
the initial condition representing the vacuum of excitons,
jJ � 1, M � 21�, only the J � 1 subspace is optically
active while the J � 0 subspace remains dark. We choose
the basis of eigenstates of J2 and Jz , �j0� � jJ � 1, M �
21�, j1� � jJ � 1, M � 0�, j2� � jJ � 1, M � 1�	, as
an appropriate representation for this problem. j0� rep-
resents the vacuum for excitons, j1� denotes a symmetric
delocalized single-exciton state, while j2� represents the
biexciton state. The RF Hamiltonian and initial density
matrix can be expressed in terms of pseudospin opera-
tors as follows:
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Here I denotes the identity matrix in the subspace J � 1.
In the absence of light, the energy levels of the system

are given by E � 2Dv 2 V , 22V , and Dv 2 V . Note
that the energy separation between states j0� and j2� is
unaffected by the interdot interaction V . Now we consider
the action of a pulse of light at resonance, i.e., Dv � 0,
and amplitude given by A ø V . We assume that the
decoherence processes are negligibly small on the time
scale of the evolution (see later). The density matrix at
time t becomes
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which exhibits the generation of coherence between
vacuum and biexciton states through the operator J022

y ,
which oscillates at frequency v2 � A2�V .

The Bell state jC� � j00� 1 eifj11� has a correspond-
ing density matrix rBell � I�3 1 J021

z �3 2 J122
z �3 1

cos�f�J022
x 2 sin�f�J022

y . Comparing this last equation
with Eq. (8), we see that the system’s quantum state at
time t2 � pV�2A2 corresponds to a maximally entan-
gled Bell state of the desired form with f � p�2. The
time evolutions of populations and coherences for an initial
vacuum state are plotted in Fig. 1. The evolution of popu-
lations of the vacuum r00 and the biexciton r22 states are
shown in Fig. 1a. Clearly our approximate analytic cal-
culation describes the system’s evolution very well when
compared with the exact numerical solution (Fig. 1a). Fig-
ure 1b shows the overlap, O�t� � Tr�rBellr�t��, between
the maximally entangled Bell state and the one obtained
by applying a rectangular pulse of light at resonance. The
thick solid line (Fig. 1b) describes O�t� with a maximally
entangled Bell state in the rotating frame, while the thin
solid line (Fig. 1b) represents the overlap with a Bell state
transformed to the laboratory frame: obviously the RF case
corresponds to the amplitude evolution of the laboratory
frame signal. The dashed line illustrates the approximate
solution overlap in the RF. The approximate solution
works very well, supporting the idea that a selective Bell
pulse of length t2 � pV�2A2 can be used to create a Bell
state (f � p�2) in the system of two coupled QDs. The
same conclusion can also be drawn from the time evolution
of the overlap between the exact Bell-state density matrix
and the one obtained directly from the numerical calcula-
tion. Therefore, the existence of a selective Bell pulse is
numerically confirmed.
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FIG. 1. (a) Population of the vacuum state r00 and biex-
citon state r22 in two coupled QDs, as a function of time.
(b) Time evolution of overlap with maximally entangled Bell
state. e � 1, V � e�10, and A � V�5. Thin solid line shows
exact numerical result in the laboratory frame. Thick solid line
in (b) represents the exact numerical solution in the rotating
frame. Dashed line shows approximate analytic result.

Three coupled QDs: GHZ states.—Next consider three
quantum dots of equal size placed at the corners of an equi-
lateral triangle. We can consider the J � 3�2 subspace as
being the only optically active subspace: the other two J �
1�2 subspaces remain optically dark. We work in the basis
set jJ � 3�2, M�, �j0� � j3�2, 23�2�, j1� � j3�2, 21�2�,
j2� � j3�2, 1�2�, j3� � j3�2, 3�2�	, where j0� is the vac-
uum state, j1� is the symmetric delocalized single-exciton
state, j2� is the symmetric delocalized biexciton state, and
j3� is the triexciton state. In the absence of radiation the en-
ergy levels are 23�Dv 1 V ��2, 2�Dv 1 7V ��2, �Dv 2

7V ��2, and 3�Dv 2 V ��2. In terms of pseudospin opera-
tors, the Hamiltonian in RF, including the radiation term,
is now given by

Hr � 2Dv�3J023
z 1 J122

z � 1 2V �J021
z 2 2J223

z �

2 A�
p

3 �J021
x 1 J223

x � 1 2J122
x � . (9)

Two kinds of maximally entangled GHZ states have to
be considered [13].

(i) The entangled state between vacuum and triexciton
states given by jGHZ�1 � �1�

p
2� �j0� 1 eifj3�� or in

terms of its associated density matrix by rG1 � I�4 1

J021
z �2 2 J223

z �2 1 cos�f�J023
x 1 sin�f�J023

y , where I
denotes the identity matrix in the J � 3�2 subspace.
We now show that this state can be generated after an
appropriate p�2 pulse. Starting with a zero-exciton state
j0�, the evolved state under the action of Hamiltonian
2272
Eq. (9) at resonance, i.e., Dv � 0, can be obtained in
a straightforward way in the limit A�V ø 1 using the
properties of pseudospin operators:
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with v3 � d2 2 d1 1 A and d6 � V �1 6
A
V 1

� A
V �2�1�2. Clearly jGHZ�1 (with f � p�2) can be gen-

erated with a p�2 pulse of length t3 � 4pV 2�3A3. In
Fig. 2a we show the overlap between the exact density
matrix and that corresponding to state jGHZ�1. The
dashed line shows the overlap using our approximate
density matrix, Eq. (10).

(ii) The entangled state between a single exci-
ton j1� and the biexciton j2� given by jGHZ�2 �
�1�

p
2� �j1� 1 eifj2��, or in terms of the correspond-

ing density matrix rG2 � I�4 2 J021
z �2 1 J223

z �2 1
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y . In order to generate jGHZ�2
the initial condition must be modified. Using a suitably
designed preparation sequence of pulses a new initial
state, corresponding to a single exciton state j1�, can be
generated. Evolution of this new initial state under Hr

[Eq. (9)] with Dv � 0, generates a density matrix at time
t given by
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FIG. 2. Time evolution of overlap with maximally entangled
GHZ states. (a) jGHZ�1 and (b) jGHZ�2 under the action of
a rectangular pulse of light at resonance. e � 1, V � e�10,
and A � 2V�5. Thick solid line represents exact numerical
solution. Dashed line shows approximate analytic result.
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where v
0
3 � d2 2 d1 2 A. Comparing this last result

with the density matrix corresponding to a jGHZ�2 state we
see that a p�2 pulse can be identified with a duration given
by t

0
3 � p�4A. Figure 2b shows the overlap between

r�t� [Eq. (11)] and rG2. There is good agreement between
our approximate result, Eq. (11), and the exact one.

We emphasize that the two maximally entangled GHZ
states considered above have very different frequencies.
In the limit A�V ø 1, the state jGHZ�1 oscillates at
the frequency v3 
 3A3�8V 2 while the state jGHZ�2
oscillates at the larger frequency v

0
3 
 2A. This feature

should enable each of these maximally entangled GHZ
states to be manipulated separately in actual experiments,
even if the initial state is mixed. Furthermore we note
that, after the preparation step, the system is evolving
under the action of the Hamiltonian in Eq. (5) with
Dv � A � 0: each one of the maximally entangled
states discussed in this Letter are eigenstates of this
remaining Hamiltonian. Hence, in the laboratory frame
jBell� oscillates at frequency 2e, jGHZ�1 oscillates at
frequency 3e, and jGHZ�2 oscillates at frequency e.

Experimental observation of these Bell and GHZ states
should be possible with present ultrafast semiconductor
optical techniques [7,8]. For instance, for GaAs QDs
e � 1.4 eV which implies a resonance optical frequency
v � 2 3 1015 s21. From the results above, it follows that
in order to generate maximally entangled exciton states,
p�2 pulses with subpicosecond duration should be used.
Femtosecond optical spectroscopy in GaAs-based nano-
structures is now currently in use [7,8]. On the other
hand, wide-gap semiconductor QDs, like ZnSe-based
QDs, should do better because of the shorter required
p�2 pulse length: e � 2.8 eV which leads to an optical
resonance frequency of v � 4 3 1015 s21. Femtosecond
spectroscopy is also currently available for this system
[14]. In addition, the corresponding increase in the
effective gap will yield a larger exciton binding energy:
typical decoherence mechanisms (e.g., acoustic phonon
scattering) will, hence, become less effective. A surprising
conclusion of our results is that entangled-state prepa-
ration is facilitated by weak light fields (i.e., A ø V ):
strong fields cause excessive oscillatory behavior in the
density matrix. This paper has considered the relatively
straightforward experimental situation of global excitation
pulses, i.e., pulses acting simultaneously on the entire
QD system. However, other possibilities exist such as
near-field optical spectroscopy [15] which allows the
optical excitation and detection of individual QD signals.
In this way, maximally entangled states with different
symmetries can be obtained.

Finally there is the well-known but difficult problem of
decoherence. Existing solid-state proposals for quantum
computers include quantum gates in coupled QDs based
on electron spin effects [16] and electronic charge effects
[17]. Although electronic charge effects are subject to
phonon decoherence, subdecoherent information may still
be encoded in such a quantum-dot array as described
recently by Zanardi et al. [18]. The present paper has
focussed on exciton-based systems, since these have
already been shown to exhibit good coherence properties
up to the picosecond time scale [8]. Phonon decoherence
will therefore be relatively unimportant on this time scale.
In addition, since no interdot transport of particles occurs,
scattering due to impurities etc. lying between the dots
will be negligible. A detailed analysis of all possible
decoherence times is beyond the scope of the present
Letter, but will be addressed elsewhere.

In summary, we have shown how maximally entangled
Bell and GHZ states can be generated using the optically
driven resonant transfer of excitons between quantum dots.
Selective Bell and GHZ pulses have been identified by
an approximate, yet accurate, analytical approach which
should prove a useful tool when designing experiments.
Exact numerical calculations confirm the existence of such
p�2 pulses for the generation of maximally entangled
states in coupled dot systems.
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