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Direct Measurement of the “Giant” Adiabatic Temperature Change in Gd5Si2Ge2
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Direct adiabatic temperature change as well as magnetic measurements were carried out on two
different samples of Gd5Si2Ge2 composition for which calculations predicted a “giant” magnetocaloric
effect (MCE). While magnetic measurements well reproduce published values, serving the basis for the
predictions, direct adiabatic temperature change measurements show a significantly smaller MCE. The
discrepancy can be interpreted on the basis of the thermodynamics of first order magnetic transitions.
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The highest magnetocaloric effect for a second ord
transition known so far is produced by the rare-earth e
ment Gd and its ferromagnetic alloys of diverse structu
of composition [1–3], where the isothermal magnetic e
tropy change,DSM , ranges up to12 J kg21 K21 and the
adiabatic temperature change,DTad, up to about 14 K for
a 7 T applied field. The magnetocaloric effect (MCE)
these materials is related to the field dependent, grad
change of the magnetic order parameter, with no chan
to the magnetic order itself. The MCE is large if the fie
has a significant impact on the order parameter, i.e., at
temperatures in paramagnets, and near the order-diso
transition temperature in ferromagnets.

The only known material displaying magnetocalor
effects higher than Gd is the near equiatomic Fe-
alloy [4], where the MCE is related to a first orde
transition, i.e., to a change of the magnetic order itse
This transition can be induced via external magnetic fie
without changing the nature (magnetic order) of the tw
phases involved.

On the basis of the above, significant interest was g
erated towards first order transition materials. The n
Gd5�SixGe12x�4; x # 0.5 alloys system [5–11] displayed
“giant” magnetic entropy changes (2–5 times higher th
that of pure Gd), when calculated from the magnetiz
tion curves using the Maxwell relations. The adiaba
temperature change was calculated from the total entr
curves and the values obtained were 30% higher than
magnetocaloric effect of gadolinium.

In 1995, Barclay and Liu performed a preliminar
direct measurement of adiabatic temperature changes
on a rod-shaped Gd5Si2Ge2 sample. (This material was
prepared by Ames Laboratory via arc melting using hi
purity constituents [8].) The obtained adiabatic tempe
ture changes were very similar to that of gadolinium, i.
fairly high, but not giant. Well within experimental error
this value agreed with adiabatic temperature chan
calculated from integrated specific heat data, i.e., fro
the entropy curves. Simultaneously, using the sa
methods for pure Gd resulted in adiabatic temperat
changes identical to reported values [1,13]. On this ba
following the construction of a more refined device [14
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direct measurements—together with detailed magne
studies—were performed on the very same sample.

Figure 1 shows the magnetization curves in the tem
perature range of the transitions measured in increas
and decreasing fields using a commercial SQUID magn
tometer. The magnetization curves—which are identic
to those in [5] within experimental error—show a gradu
transition to metamagnetism, starting at about 272 K a
being complete at about 280 K. Below about 270 K th
magnetization curves are characteristic of a ferromag
without domains. Similarly, the metamagnetism grad
ally disappears between 310 and 320 K, giving rise
paramagnetic behavior. In the metamagnetic region,
material displays field induced transitions. The critic
field for these transitions depends on the temperature
well as on the direction of the field change (increasin
or decreasing fields). We believe the phenomenon
connected to different Gd sublattices with different, an
or differently ordered moments. At the critical field
the spins of at least one sublattice flip in unison towa
the direction of the applied field, resulting in a nea
ferromagnetic structure [15]. In decreasing fields, th
ferromagnetic order collapses in lower fields tha

FIG. 1. Magnetization curves of a Gd5Si2Ge2 rod, in increas-
ing or decreasing applied fields.
© 1999 The American Physical Society
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is necessary to induce the transition, resulting in a
remanence-free hysteresis.

The magnetic entropy change was then calculated using
the integrated Maxwell relations [16]:

dS � 2
Z ∑

dM
dT

∏
H

dH , (1)

where dS, dH, dM, dT are all infinitesimal increments of
either continuous functions �S, M� or independent experi-
mental parameters �T , H�. Figure 2(a) shows the calcu-
lated results for increasing fields. The behavior of DSM

is identical to that obtained [5–11] earlier, with a slightly
higher value for the “spike” in our calculation. However,
when calculating the magnetic entropy change in decreas-
ing fields, the results become different [Fig. 2(b)]. The
spike, driving the values into the giant range in increasing
fields, is significantly reduced and shifted to higher tem-
perature in decreasing fields, proving that the transition
of Gd5Si2Ge2 is not reversible. The plateau between the
two spikes is stable, but it corresponds only to a moderate
magnetic entropy change. This behavior, i.e., the satura-
tion of the calculated magnetic entropy change as a func-
tion of the field, as well as the existence of the plateau,

FIG. 2. Magnetic entropy change for (a) increasing and
(b) decreasing fields, as calculated from the Maxwell relations
(circles), or from the magnetic Clausius-Clapeyron equation
(triangles), using the magnetization curves shown in Fig. 1.
which broadens, but does not increase in height with in-
creasing applied fields, are characteristic features of first
order magnetic transitions [17].

Figure 3 shows the results of recent direct measure-
ments of the adiabatic temperature change on the sample.
The values obtained are quite close to results found earlier
[12]. The values obtained via indirect methods [5,7,8], are
about 65% larger than the values shown in Fig. 3. A sig-
nificant experimental error can be excluded, as our results
on high purity Gd agrees with the value of AMES labora-
tory [13] within 1 K (10.5 and 11.5 K, respectively, both
for 5 T fields). For 7 T, our value (12 and 13 K for in-
dustrial and high purity Gd, respectively) agrees well with
that of Brown (14 K, [1]).

The measurements were then repeated on a button-
shaped second sample prepared by AMES laboratory via
arc melting, using the same high purity starting materials
as before. The adiabatic temperature change was within
experimental error identical to that of the first sample as
shown in Fig. 3.

To resolve the discrepancy between the direct and the
indirect (calculated) results, it is necessary to review the
thermodynamics behind the calculations. From now on,
we will refer to the MCE in Gd type materials as “or-
der parameter” MCE, and those in Fe-Rh or Gd5Si2Ge2
materials as “order” MCE. The basic difference between
“order parameter” and “order” MCE is the nature of the
entropy change. For order parameter MCE, the grad-
ual, continuous magnetic entropy change is related to the
field-induced, gradual, continuous changes of the order
parameter. The experimentally measured macroscopic
magnetization well represents this order parameter [18];
thus the magnetic entropy change can be calculated from
the magnetization curves using the integrated Maxwell
relations [16]. This entropy change usually agrees well
with the value obtained from field dependent specific heat
measurements [2,13]. Simultaneously, direct measure-
ments of the adiabatic temperature change agree well with

FIG. 3. Adiabatic temperature change (direct measurement)
for Gd5Si2Ge2 samples (�, rod; �, button).
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values obtained from field dependent specific heat mea-
surements [2,13] as the isentropic distance of the total en-
tropy curves or using approximative equations [2].

On the contrary, order MCE does not involve a
“magnetic” entropy change in first approximation. The
sudden, discontinuous entropy change is related to the
phase transition itself, and is approximately independent
of the applied field. The field shifts the transition only
2264
to higher temperatures. This entropy change cannot be
calculated from the Maxwell relations, for two reasons:
(i) It is not a magnetic entropy change, and (ii) M�T � or
M�H� is not a continuous, derivable function.

For first order transitions, the Clausius-Clapeyron equa-
tion offers a way to calculate the entropy change [19].
The transition occurs if the two magnetic phases have
equal thermodynamic potential:
∑
U1 2

n1M2
1

2

∏
2 QS1 1 �pV1 2 HM1� �

∑
U2 2

n2M2
2

2

∏
2 QS2 1 �pV2 2 HM2� , (2)

where Q is the transition temperature at the field H, and U1,2, S1,2, V1,2, M1,2 are the internal energy, entropy, volume,
and magnetization of phases 1 and 2, and nM2 describes the molecular field contribution. Assuming the external field
only triggers the transition, but does not change the value of the physical parameters �S, M, V , n� in either phase, the
difference of the transition temperatures for a field change of DH is given asÇ

DQ

DH

Ç
�

Ç
DM
DS

Ç
� const, on the basis of the above assumptions, (3)
where DM � M2 2 M1 is the difference between the
magnetizations, and DS � S2 2 S1 the difference be-
tween the entropies of the two phases, and the sign de-
pends on the sign of DM and DS.

We have to point out, that unlike the Maxwell relations,
this is not a differential equation. It gives the relation
between differences, not differentials. Unlike T and H
in the Maxwell relations, the variables Q and H are
not independent experimental parameters. Equation (3)
shows instead, that if a transition is observed at a
temperature Q1 in an applied field H1, the temperature
will shift by DQ � DH�DM�DS� to Q2, if the applied
field is increased by DH to H2. Similarly, if a critical
field H1 is observed on an isothermal magnetization curve
at a temperature T1, raising the temperature by DT to
T2 will shift the critical field by DH � DT �DS�DM� to
H2. Consequently, measuring the field dependence of the
critical temperature (or the temperature dependence of the
critical field) will allow for the determination of DS�DM.
As DM can be obtained from the magnetization curves
with good approximation, DS can then be calculated from
Eq. (3).

Evaluation of the Hcrit�Tcrit� curves gives the zero
field transition temperature as 272.2 and 278.2 K for
increasing and decreasing fields, respectively, and dT�dH
equals 6.5 3 1024 K Oe21. From this value and the
experimentally observed DM, the entropy change can
be calculated and the curves are shown in Figs. 2(a)
and 2(b). The curves scale with the plateau of the
Maxwell relations, but it is about 20% lower. At the
zero field transition temperature the entropy change is
obtained as DS � 12.5 J kg21 K21. Figure 4 displays
the idealized T -S diagram for this type of material,
assuming the entropy change is field and temperature
independent. The figure clearly shows that if the field
is not high enough to shift the transition, i.e., the nominal
DQ , DTad, no adiabatic temperature change will be
observed. Magnetization curves show that threshold field
equals about 1.55 T, as discussed above. Thereafter, the
value of DTad does not depend on the applied field, but is
determined by the value of DS, and the slope of the curve,

FIG. 4. Schematic S�T� diagram for first order magnetic
transitions, used to calculate the available DTad from DS.
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which equals Cp�T at the beginning of the transition [4].
Calculating the total entropy from specific heat data, with
or without magnetic field, might be difficult for a sharp
transition. Using an independently obtained DS might be
sometimes advantageous.

With DS calculated from the Clausius-Clapeyron
method, we obtain DT � 9.9 K, which is in excellent
agreement with the direct measurement of 10 K at 7 T.
From Fig. 4 we can also estimate the width of the plateau.
If the experimental temperature is higher than Q 1 DQ

for the maximum applied field, the adiabatic temperature
change disappears as the field cannot trigger the transition
anymore. For a 7 T applied field, this temperature differ-
ence equals 35 K (taking the threshold into consideration),
that agrees very well with the observed width. Figure 4
also shows that increasing the value of DS, DT will
also increase, as well as the threshold, which means the
peak will be higher, but narrower. Using the value of
the spike as obtained from Maxwell relations, yields
DTmax � 14.9 K, which is about the value reported in
Ref. [5]. At the same time, the DT peak is significantly
narrower than the one observed in our direct measure-
ments, in accordance with the above reasoning.

Figure 4 demonstrates that using the maximum DS
value obtained from Maxwell relations overestimates DTad
in case of first order transitions, and that calculations
based on the total entropy curves from field-dependent
specific heat measurements deliver better results [12].
The entropy discontinuity obtained from specific heat
measurements can be justified by calculating the DS value
from magnetization curves using the Clausius-Clapeyron
equations [4,19].

On this basis, the magnetocaloric effect of Gd5Si2Ge2
lies in the same range as that of Gd and its alloys.
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