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Novel decay laws in three-dimensional incompressible magnetohydrodynamic turbulence are ob
by high-resolution numerical simulations with up to5123 modes and explained by a simple theoretic
model. For the typical case of finite magnetic helicityH the energy decay is governed by
the conservation ofH and the decay of the energy ratioG � EV �EM . One finds the relation
�E5�2�eH�G1�2��1 1 G�3�2 � const, wheree � 2dE�dt. Use of the numerical result thatG�t� ~ E�t�
gives the asymptotic lawE � t20.5 in good agreement with the numerical observations. For the spe
caseH � 0 the energy decreases more rapidlyE � t21.

PACS numbers: 47.65.+a, 47.27.Eq, 47.27.Gs
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Many plasmas, especially in astrophysics, are char
terized by turbulent magnetic fields, where the best-know
example is the turbulence in the solar wind (actually th
only one accessible toin situ observations, since there
are practically no laboratory experiments). The decay
magnetic turbulence is an important theoretical issue, d
termining, for instance, the lifetime of star-forming cloud
[1]. It is also connected with the question of fast mag
netic reconnection. The convenient framework to d
scribe such turbulence is magnetohydrodynamics (MHD
Here one ignores the actual complicated dissipation p
cesses, which occur on the smallest scales and would u
ally require a kinetic treatment, assuming that the ma
turbulent scales are essentially independent thereof.

MHD turbulence has become a paradigm in turbulen
theory, which has been receiving considerable attenti
It is well known that 2D and 3D MHD turbulence have
many features in common concerning, in particular, th
cascade properties. In both cases there are three quad
ideal invariants: the energyE � 1

2

R
�y2 1 B2� dV , the

cross helicityK �
R

v ? B dV , and a purely magnetic
quantity, the magnetic helicityH �

R
A ? B dV in 3D

and the mean-square magnetic potentialHc �
R

c2 dV
in 2D, which both exhibit an inverse cascade. Inde
many theoretical predictions do not distinguish betwe
2D and 3D, concerning, e.g., the tendency toward v
locity and magnetic field alignment or the spectral pro
erties. Thus it is not surprising that numerical studie
of MHD turbulence have mostly been concentrated
two-dimensional simulations, where high Reynolds num
bers can be reached much more readily (see, e.g., [2–
[In homogeneous turbulence the Reynolds number Rm�
yL�h is defined using dynamic quantities of the tur
bulencey � �EV �1�2 and L � E3�2�e, where e is the
energy dissipation rate. In this Letter, the precise de
nition is not important; higher Reynolds number simpl
means lowerh, initial conditions being similar.] While
2D simulations are now being performed with up toN2 �
40962 modes (or, more accurately, collocation points) [7
studies of 3D MHD turbulence have until now been re
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stricted to relatively low Reynolds numbers using typ
cally N3 � 643 modes, e.g., [8,9], which precludes a
inertial range scaling behavior. Also, in Ref. [10], whe
a somewhat higher Reynolds number could be reached
using1803 modes, attention was focused primarily on th
process of turbulence generation from smooth initial co
ditions and the properties of the prominent spatial stru
tures, current, and vorticity sheets.

In this Letter we present results of a numerical stu
of freely decaying 3D MHD turbulence with spatia
resolution up to5123 modes. We discuss the decay law
of the integral quantities, in particular, the energyE and
the ratio of kinetic and magnetic energiesG � EV �EM ,
and their dependence on the quasiconstant value ofH.
The energy decay is found to follow a simple law, whic
is determined byG�t� and H. While most previous
studies have been restricted to the case of neglig
magnetic helicity H � 0, we focus attention on the
properties of the turbulence for finiteH, which is more
typical for naturally occurring magnetic turbulence. W
find that for finiteH the energy decays significantly mor
slowly than forH � 0. This behavior is also due to th
rapid decrease of the energy ratioG, which has the same
decay time as the energy itself.

The 3D incompressible MHD equations, written in th
usual units,

≠tB 2 = 3 �v 3 B� � hn�21�n21=2nB , (1)

≠tw 2 = 3 �v 3 w� 2

= 3 �j 3 B� � mn�21�n21=2nw , (2)

w � = 3 v , j � = 3 B ,

are solved in a cubic box of size2p with periodic bound-
ary conditions. The numerical method is a pseudospec
scheme with spherical mode truncation as convenien
used in 3D turbulence simulations instead of full dealia
ing by the 2�3 rule chosen in most 2D simulations. Th
effect of aliasing errors has been discussed by Orszag
© 1999 The American Physical Society 2195
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(see also [12]). Initial conditions are

Bk � ae2k2�k2
02iak , vk � be2k2�k2

02ibk , (3)

which are characterized by random phases ak, bk and
satisfy the conditions k ? Bk � k ? vk � 0 as well as
E � 1 and G � 1. Further restrictions on Bk and vk
arise by requiring specific values of H and K , respec-
tively. The wave number k0, the location of the maximum
of the initial energy spectrum, is chosen as k0 � 4, which
allows the inverse cascade of Hk to develop freely during
the simulation time of 10–20 eddy turnover times. This
implies a certain loss of inertial range, i.e., a reduction in
Reynolds number, but the sacrifice is unavoidable in the
presence of inverse cascade dynamics. Choosing k0 � 1
would lead to magnetic condensation in the lowest-k state,
which would affect the entire turbulence dynamics. We
have used both normal diffusion n � 1 and hyperdiffu-
sion n � 2. Apart from the fact that inertial ranges are
wider and H is still better conserved for n � 2 than for
n � 1, no essential differences are found between the two
cases. The generalized magnetic Prandtl number hn�mn

has been set equal to unity. Table I lists the most impor-
tant parameters of the simulation runs.

The energy decay law is a characteristic property of
a turbulent system. In hydrodynamic turbulence the de-
cay rate depends on the energy spectrum at small k. As-
suming time invariance of the Loitsianskii integral L �R`

0 dl l4�yl�x 1 l�yl�x��, the energy has been predicted
to follow the similarity law E � t210�7 [13]. The invari-
ance of L has, however, been questioned (see, e.g., [14]).
Both closure theory [15] and low Reynolds number simu-
lations [9] yield a significantly slower decrease, E � t21.
Experimental measurements of the energy decay law t2n

are rather difficult and do not give a uniform picture, n
ranging between 1.3 [16] and 2 [17].

The invariance of the Loitsianskii integral has recently
also been postulated for MHD turbulence [5], where

TABLE I. Summary of the simulation runs. The value
of H � 0.28 corresponds to the maximum value for the
given spectrum (3), H # Hmax � E�k0. The initial alignment
is measured by the correlation r0 � K�E. The Reynolds
numbers are taken at t � 4. No numbers are given for hyper-
resistivity n � 2, where the classical Reynolds number is not
defined.

Run No. N n hn Rm H r0 tmax

1 256 1 1023 1600 0.19 0.04 18.5
2 512 1 3 3 1024 6400 0.19 0.04 10
3 256 2 1026 · · · 0 0.05 20
4 256 2 1026 · · · 0.11 0.05 10
5 256 2 1026 · · · 0.19 0.04 20
6 512 2 3 3 1028 · · · 0.19 0.04 10
7 256 2 1026 · · · 0.25 0.04 10
8 256 2 1026 · · · 0.28 0.03 10
9 256 2 1026 · · · 0.19 0.38 10

10 256 2 1026 · · · 0.19 0.71 10
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LMHD is defined in analogy to L in terms of the lon-
gitudinal correlation function �z6

l �x 1 l�z6
l �x�� of the

Elsaesser fields z6 � v 6 B. Since z2 � E, this assump-
tion gives LMHD � L5E � const, where L is the integral
scale length of the turbulence. In addition, the expression
for the energy transfer dE�dt � 2e � 2z4�LB0 was
used, which formally accounts for the Alfvén effect
[18,19]. These relations give �dE�dt�B0�E11�5 � const
and, hence, E � t25�6, treating B0 as constant. One
may, however, argue that the Alfvén effect is only
important on small scales l ø L, while on the scale L
of the energy-containing eddies B0 is not constant but
B0 � E1�2 (except for the case that B0 is an external field,
which would, however, make the turbulence strongly
anisotropic); hence, e � E3�2�L, which would give the
same result n � 10�7 as predicted for hydrodynamic
turbulence. Low-resolution numerical simulations [9]
indicate n � 1, which is also found in recent simulations
of compressible MHD turbulence [1].

For finite magnetic helicity H provides a constant
during energy decay, which for high Reynolds number
is more robust than the questionable invariance of the
Loitsianskii integral. It is true that in contrast to the
2D case, where EM and Hc are tightly coupled, such
that EM fi 0 implies Hc fi 0, in 3D a state with H � 0
and finite magnetic energy is possible. But this is only
a special and nontypical case, since in nature magnetic
turbulence usually occurs in rotating systems, which give
rise to finite magnetic helicity.

If the process of turbulence decay is self-similar, which
also implies that the energy ratio G remains constant, the
energy decay law follows from a simple argument [20].
With the integral scale length L � E3�2�e, the dominant
scale of the energy-containing eddies, we have

H � EML � EL , (4)

since owing to the assumed self-similarity EM � EV �
E. Inserting L gives

2
dE
dt

� e �
E5�2

H
, (5)

which has the similarity solution E � t22�3 (this behavior
has also been predicted by Hatori [21], though using
a different approach). In Fig. 1 the ratio E5�2��eH� is
plotted for the runs from Table I with H fi 0 and small
initial correlation r0. The figure shows that this quantity
is not constant, but increases in time. Moreover, there is
a significant spread of the different curves. Integration
yields a slower asymptotic energy decay, n � 0.5 0.55.
[The log-log representation of E�t�, often given in the
literature to make a power law behavior visible, is
misleading, since the major part of such a curve refers
to the transition period of turbulence generation. The
solution �t 2 t��2n approaches the power law t2n only
asymptotically for t ¿ t�, where t� is not accurately
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FIG. 1. Energy decay law, displayed in the differential form
E5�2�eH for the runs 1, 2, 4, 5, 6, 7, and 8 in Table I. The
increase in time indicates an energy decrease slower than t22�3,
typically t20.5.

known. We therefore prefer to plot the decay law in the
primary differential form.]

We can attribute this discrepancy to the fact that the
turbulence does not decay in a fully self-similar way.
Indeed the energy ratio G is found to decrease rapidly, in
contrast to the 2D case, where G is quasiconstant decaying
at most logarithmically [3,4]. (The ratio of viscous and
resistive dissipation em�eh , however, remains constant
just as in the 2D case [4], which simply reflects the
basic property that dissipation takes place in current sheets
and that these are also vorticity sheets, i.e., the location
of viscous dissipation.) Let us incorporate the dynamic
change of G in the theory of the energy decay. Assuming
that the most important nonlinearities arise from the v ? =

contributions in the MHD equations, Eq. (5) is replaced by

e � �EV �1�2 E
L

�
G1�2

�1 1 G�3�2

E5�2

H
, (6)

using the relation (4). Figure 2 shows that
�E5�2�eH�G1�2��1 1 G�3�2 is indeed nearly constant
for t . 2, when turbulence is fully developed, and the
spread of the different curves in Fig. 1 is strongly reduced.
Hence, relation (6) is generally valid for finite magnetic
helicity. Figure 2 also shows that the turbulence decay is
practically independent of the magnitude of the dissipation
coefficients, i.e., the Reynolds number, as well as of the
character of the dissipation (n � 1 or 2).

Also the time evolution of the energy ratio G exhibits a
uniform behavior which is demonstrated in Fig. 3. Since
the initial nonturbulent relaxation of G depends on H, we
have normalized G�t� to the value at t � 1, where the
dissipation rate assumes its maximum and the turbulent
decay starts. Moreover, we find that G�t� is proportional
to E�t�, G � cE�H, c � 0.1 0.15, as seen in Fig. 4,
FIG. 2. Energy decay law in differential form
�E5�2�eH�G1�2��1 1 G�3�2 for the same runs as in Fig. 1. The
lowest curve, which falls somewhat outside the main curve
bundle, corresponds to the run with the smallest Reynolds
number (run 1), where conservation of H is least good.

where G��E�H� is plotted. Inserting this result in Eq. (6),
we obtain the differential equation for E, which in the
asymptotic limit G ø 1 becomes

2
dE
dt

� 0.5
E3

H3�2 , (7)

with the similarity solution E � t20.5. For finite G

the theory predicts a somewhat steeper decay flattening
asymptotically to t20.5 as G becomes small, which is
exactly the behavior of E�t� observed in the simulations.
The relation G ~ E also gives the similarity law for the
kinetic energy EV � t21.

FIG. 3. Energy ratio G�t� normalized to the values at t � 1
for the same runs as in Fig. 1.
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FIG. 4. G��E�H� for the same runs as in Fig. 1 demonstrating
the proportionality G ~ E.

The rapid decay of the energy ratio G implies that the
system decays toward a static magnetic state, which is
consistent with Taylor’s conjecture [22]. The t20.5 decay
of the magnetic energy continues, as long as the turbulent
dynamics is still active. In the asymptotic static state the
energy decays, of course, much more slowly.

This theory does not apply to the special case H � 0.
Here we find indeed a different decay law, E � t21 from
run 3, which is consistent with previous simulations at
lower Reynolds numbers [9]. The transition to the slower
decay for finite H occurs at relatively small values, 10%–
20% of the maximum possible value.

We have also studied the effect of an initial velocity–
magnetic-field alignment r0 � K�E. For small r0 ,

0.1, the alignment, after increasing initially, tends to
saturate at some small value, which is due to the fact that
K is less well conserved than H. For higher r0 . 0.3
(runs 9 and 10 in Table I) the alignment becomes very
strong, which as expected slows down the energy decay
drastically.

In conclusion, we have presented a new phenomenol-
ogy of the energy decay in 3D incompressible MHD
turbulence, which agrees very well with direct numeri-
cal simulations at relatively high Reynolds numbers. We
consider, in particular, the case of finite magnetic helicity
H, which is typical for naturally occurring magnetic tur-
bulence. The energy decay is governed by the conserva-
tion of H and the time evolution of the energy ratio G �
EV �EM . We find that the relation �E5�2�eH�G1�2��1 1

G�3�2 � const is satisfied for most H values and is inde-
pendent of the magnitude of the dissipation coefficients
and the order of the diffusion operator, provided the
Reynolds number is sufficiently high such that H is well
conserved. The kinetic energy is found to decrease more
2198
rapidly than the magnetic one in contrast to the behavior
in 2D, in particular, we find G ~ E. This proportional-
ity leads to a simple energy decay law, 2dE�dt � E3,
or E � t20.5. We also obtain the similarity law for the
kinetic energy EV � t21. For the special case H � 0
the energy decays more rapidly, E � t21, which agrees
with previous simulations at lower Reynolds numbers.
The transition to the finite-H behavior occurs at relatively
small values of H.

Results concerning the spatial scaling properties of 3D
MHD turbulence will be published in a subsequent paper.
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