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Critical Behavior of the Magnetoresistive Pyrochlore Tl2Mn2O7
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We report measurements of the ac susceptibility and dc magnetization of the colossal magnetoresis
pyrochlore Tl2Mn2O7 from which we determine the critical temperatureTc � 120.65 6 0.15 K and
critical exponentsd � 4.65 6 0.15 (from the critical isotherm),g 1 b � 1.75 6 0.03 (from the
temperature dependence of the crossover line), andg � 1.31 6 0.05 (from the temperature dependence
of the susceptibility along the same line). Unlike recently reported values for perovskite systems, th
exponent values are very close to those predicted by the near-neighbor, 3D Heisenberg model.
pyrochlore system, however, exhibits a marked regular (i.e., noncritical) component in the response n
Tc, which is unusual in view of the absence of Mn31 ions in this system.

PACS numbers: 75.70.Pa, 75.30.Cr, 75.30.Kz, 75.40.Cx
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The presence of colossal magnetoresistance (CMR)
mixed valence manganese oxidesL12xAxMnO3 (L �
rare earth or Y andA � divalent alkaline earth) in the
vicinity of a paramagnetic to ferromagnetic transition ha
been the subject of much recent interest [1]. The intima
connection between electrical transport and magne
order displayed by these systems is generally ascrib
to the presence of double exchange (DE), as a result
which theeg holes at Mn41 sites are inhibited from hop-
ping to near neighbor Mn31 when the coret2g spins are
antiparallel [2]. Thus the kinetic energy gained by thes
carriers in the transition from incoherent hopping in th
high temperature paramagnetic insulating phase to the l
temperature ferromagnetic metallic phase stabilizes t
magnetic order. A quantitative understanding of CMR i
these systems also requires strong Jahn-Teller effects
and is thus directly connected to the presence of Mn31

ions induced by doping (as is DE).
Recently the pyrochlore Tl2Mn2O7 was reported to

exhibit a CMR which appeared to arise from a differ
ent mechanism from that operating in the manganese
rovskites [4]. This pyrochlore contains only Mn41 ions,
so that both Jahn-Teller effects and DE are preclude
and the onset of ferromagnetism (withTc near 120 K) has
been attributed to superexchange. Furthermore, not o
are current explanations [5] of CMR in these two type
of systems different but the attendant spin dynamics a
also dissimilar. The magnetic correlation length diverge
while the spin wave stiffness collapses asTc is approached
from above and below, respectively, in this pyrochlore i
marked contrast to the doped manganites, particularly
Ca doping [6]. In the latter a quasielastic spin diffusio
component, possibly associated with polaronic behavio
dominates the “critical” fluctuation spectrum. Here we fo
cus on the quasistatic magnetic response of this pyrochl
in the critical regime and extract exponent values ve
close to those predicted by the near-neighbor, isotrop
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three-dimensional Heisenberg model. This is in marke
contrast to recently reported exponent estimates for t
doped perovskite [7], thus suggesting that the basic int
actions responsible for magnetic order may result in th
doped perovskites and the pyrochlores being assigned
different universality classes.

Measurements of the ac susceptibility (at 2.4 kHz
a 30 mOe rms driving field) and the dc magnetizatio
were carried out simultaneously in a Quantum Desig
Model PPMS 6000 magnetometer on a polycrystallin
sample weighing 25.7 mg with approximate dimension
�5 3 3 3 3� mm3. At each temperature selected, a
appropriate time interval was allowed to elapse prior
commencing measurements [7]. The sample preparat
techniques have been detailed previously as have
structure and transport properties of similarly prepare
specimens.

Figure 1 shows the ac susceptibility measured in va
ous static biasing fieldsHa; the application of such fields
of increasing strength progressively suppress the prin
pal (Hopkinson) maximum evident in the zero-field re
sponse (inset), enabling the secondary, critical maxima
be resolved (as shown in the main body of this figure
The temperaturesTm of these critical maxima shift up-
ward while their amplitudes decrease asHa increases. As
detailed previously [8], such maxima are a characteris
signature of critical fluctuations accompanying a continu
ous magnetic phase transition; their temperature and fi
dependence is consistent with the static scaling law d
scription of such a transition, while the emergence of su
peaks in finite field can be explained qualitatively on th
basis of the fluctuation-dissipation theorem [8]. Furthe
more, their appearance and field/temperature depende
agree with numerical solutions for the ferromagnet
phase of a Sherrington–Kirkpatrick-like model [8] (within
which the peak evolution is governed—as expected—
mean field exponents). The locus of the critical maxim
© 1999 The American Physical Society 219
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FIG. 1. The ac susceptibility �emu�g Oe�, corrected for back-
ground and demagnetizing effects, as a function of tempera-
ture measured at static biasing fields of 400, 500, . . . , 1000,
1200, . . . , 2000 Oe, top to bottom, and clearly showing the
emergence of the critical maxima. The dashed line denotes the
crossover line. The inset shows the temperature dependence of
the zero field ac susceptibility.

evident in Fig. 1 delineates the crossover line, above
which the response is thermally dominated, while below it
the response is field dominated. Of particular importance
in the present investigation is the result that various criti-
cal exponents can be deduced directly from the maxima
evident in Fig. 1; by contrast, estimates for the exponents
g (from the magnetization above Tc) and b (from the
spontaneous magnetization below Tc) frequently involve
extrapolation to zero field (to avoid the complications
associated with regular, i.e., not critical, contributions to
the low field response). The approach advocated here
avoids such extrapolations (and any uncertainties inher-
ent in them), as the following argument demonstrates.
The scaling law equation of state (written in terms of
the conventional linear scaling fields h � Hi�Tc and
t � jT 2 Tcj�Tc) expresses the magnetization �m� and
susceptibility �x� in the vicinity of the ferromagnetic
ordering temperature Tc as [9]

m � tbF

µ
h

tg1b

∂
; x�h, t� �

≠m
≠h

� t2gG

µ
h

tg1b

∂
,

(1)

where G is the derivative (with respect to its argument) of
the (unknown) scaling function F. Assuming the Widom
equality g � b�d 2 1� to be valid enables the suscepti-
bility to be rewritten as

x�h, t� � t2gG

µ
h

tg1b

∂
� h121�dH

µ
h

tg1b

∂
, (2)
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where H�X� � Xg��g1b�G�X�. The latter form in Eq. (2)
indicates that measurements performed in fixed field (so
that the prefactor h121�d is constant) as a function of tem-
perature reproduce the functional dependence of H�X�.
Furthermore, if these (unknown) scaling functions H�X�,
G�X�, or F�X� are universal functions of their argu-
ment—as the scaling approach asserts—then any feature
in, say, H�X�—such as the maxima evident in Fig. 1—
will occur at the same value for the variable X. Denoting
the reduced temperature of the maxima evident in this fig-
ure by tm � �Tm 2 Tc��Tc, this analysis leads directly to

h

tg1b
m

� C; tm ~ H
1��g1b�
i , (3)

and as the argument X of these scaling functions (H, G,
or F) is a constant �X � C� at such maxima, so are the
functions themselves, when, from Eq. (1)

x�h, tm� ~ t2g
m . (4)

Equations (3) and (4) enable g and �g 1 b� to be esti-
mated directly from such data, as the following shows.
From Eq. (3), plots of the critical peak temperatures Tm,
from Fig. 1, against H

1��g1b�
i should be linear with the in-

tercept yielding Tc [the internal field, Hi � Ha 2 NM in
the usual notation, was found using the measured magne-
tization M and the slope, N21, of the low field (shearing)
curve]. Such plots have been made for a variety of
exponent values, with the best fit obtained with g 1 b

values close to those predicted [10] by the isotropic, near-
neighbor Heisenberg model �g 1 b � 1.75�, yielding
Tc � 120.65 6 0.15 (slightly below the value found re-
cently from neutron scattering data [6] on a similarly pre-
pared sample). Figure 2(a) confirms both these exponent
and Tc estimates; here the reduced peak temperatures,
tm, are plotted against the internal field, Hi , on a double
logarithmic scale; the straight line drawn confirms the
power-law prediction—Eq. (3)—with Heisenberg model
exponents, viz. �g 1 b�21 � 0.57 6 0.01.

Having identified Tc, the exponent d is found directly
from the field dependence of the magnetization measured
along the critical isotherm, Fig. 2(b). These data yield

d � 4.65 6 0.15

in agreement with the Heisenberg model value of 4.80,
within experimental uncertainty. The exponent g is found
from the data summarized in Fig. 1 utilizing Eq. (4).
Figure 3 shows the susceptibility maxima evident in the
first figure (corrected for background and demagnetizing
effects) plotted against the reduced peak temperature, tm,
on a double logarithmic scale. These data confirm the
power-law prediction—Eq. (4)—and yield

g � 1.31 6 0.05 ,

marginally lower than the Heisenberg model value of
1.386. A final and convincing test of the applicability of
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FIG. 2. (a) The reduced peak temperature, tm, versus the
internal field, Hi (kOe), on a double logarithmic plot. The
straight line fit yields a value for the crossover exponent,
�g 1 b�21, of 0.57. (b) The sample magnetization, M (emu),
as a function of the internal field, Hi (Oe), measured along the
critical isotherm and plotted on a double logarithmic plot. The
straight line fit yields d � 4.65.

Heisenberg model exponents to this system is provided in
Fig. 4. The latter expression for x�h, t� shown in Eq. (2)
indicates that each constant field scan or isokap of Fig. 1
corrected for background and demagnetizing effects and
normalized to its peak value, viz.

FIG. 3. The amplitude of the susceptibility maxima
�emu�g Oe� (shown in Fig. 1) versus the reduced peak
temperature, tm, on a double log plot. These data yield a
value of g � 1.31 6 0.05. The inset shows the temperature
dependence of the effective Kouvel-Fisher susceptibility
exponent, g�.
x�h, t��x�h, tm� � H�X��H�X � C� , (5)

should scale onto a single curve when plotted against the
argument X of the scaling function [actually the inverse
t�H

1��g1b�
i of this argument to preserve the structure evi-

dent in Fig. 1]. Figure 4 verifies such a scaling hypothe-
sis, and from data contained in Figs. 2–4 it is concluded
that the CMR pyrochlore Tl2Mn2O7 exhibits static mag-
netic critical exponents consistent with those predicted
by the isotropic, near-neighbor three-dimensional Heisen-
berg model. This contrasts with the conclusions reached
from recent detailed measurements on Sr-doped man-
ganese perovskites [7], thus raising the possibility that
these two types of systems, in which ferromagnetic order
results from superexchange and double exchange, respec-
tively, may belong in different universality classes. Fur-
ther theoretical work is necessary to clarify the origin of
such differences.

Despite the validity of Heisenberg model exponents
demonstrated above, the response of this pyrochlore dis-
plays some unusual characteristics, specifically in the low
field region near Tc. This can be seen directly from
Fig. 1, in which fields in excess of 400 Oe are necessary
to first resolve critical peak structure. Such a situation
reflects the presence of a substantial regular component
in this response (viz. a noncritical component, often attri-
buted [11] to “ technical” sources such as coherent rotation,
domain wall motion, etc.). These regular components are
clearly not driven to saturation in low fields �# 400 Oe�
near Tc, so that this pyrochlore system displays features
normally associated with technical hardness. This result is
difficult to understand as previous detailed analyses have

FIG. 4. The “scaling plot” for the isokaps shown in Fig. 1.
The susceptibility normalized to the respective peak amplitudes
is plotted against the (inverse) argument �t�h1��g1b�� of the
scaling function. The data in Fig. 1 collapse onto a single curve
providing convincing evidence of the validity of Heisenberg
model exponents to this pyrochlore system.
221
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convincingly demonstrated that this pyrochlore is devoid
of Mn31 ions, so that Tl2Mn2O7 displays neither mixed
valent �Mn31-Mn41� mediated DE nor associated Jahn-
Teller effects [4]. The latter is particularly important in the
present context since the observation of technical “hard-
ness” in a variety of other systems has been attributed to
the presence of single ion anisotropy resulting from spin-
orbit coupling [11]. The absence of a Jahn-Teller ion, such
as Mn31, precludes such a coupling in the present system,
so that the origin of this apparent hardness remains unclear.

The presence of a regular component in the low field
response is also confirmed indirectly by the behavior of
the effective Kouvel-Fisher susceptibility exponent [12]

g��t� � d��� ln x�0, t�����d ln�t� ,

deduced from the zero field susceptibility (inset, Fig. 1)
and reproduced in the inset of Fig. 3. While the asymp-
totic �t ! 0� behavior of g��t� is consistent with the
Heisenberg model value of g � 1.386, the temperature
variation of the effective exponent displays features fre-
quently ascribed to the occurrence of a variance in the
distribution of magnetic interactions [8,13] [viz. a maxi-
mum in g��t� above Tc]. Specifically in the doped man-
ganese perovskites the inherently inhomogeneous mixed
valent state prevalent in them could lead to spatially inho-
mogeneous magnetic interactions (i.e., a relative enhance-
ment of ferromagnetic DE in regions statistically rich in
the dopant ions, competing with the antiferromagnetic su-
perexchange characteristic of the host LaMnO3), which
could be modeled by such a distribution. This explana-
tion is not appropriate here, and we contend that the tem-
perature dependence displayed by g��t� deduced from the
“zero” fi eld susceptibility results from an anomalous regu-
lar component in the low field response, directly evident
in Fig. 1.

Further evidence of the anomalous character of this
low field contribution is provided by measurement of the
coercive field Hc, which, even at 4.2 K (i.e., well below
Tc), is only some 2 Oe. In general Hc is taken as a
measure of technical hardness, and fields on the order of
Hc�T # Tc� are generally sufficient to saturate the regular
component arising from technical sources. This low value
for Hc is clearly qualitatively consistent with the absence
of an orbital component in the total moment at Mn sites
in this pyrochlore. Nevertheless, we plan to investigate
the spontaneous resistive anisotropy—the presence of
which relies on the presence of such an orbital component
222
[14]—as a way of providing further confirmation of the
absence of Mn31 ions in this pyrochlore.
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