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Measure Synchronization in Coupled Hamiltonian Systems
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The dynamics of two coupled Hamiltonian systems is shown to exhibit a transition to cohe
evolution as the strength of coupling is increased. Above this transition the two systems are not s
synchronized, but their orbits cover the same region of the (individual) phase space with iden
invariant measures. Thismeasure synchronizationis numerically observed in maps and time-continuou
systems, for both regular and chaotic evolution, and can be analytically derived for regular sys
in the action-angle representation, which suggest that it is a generic form of coherent evolutio
Hamiltonian dynamics. Analytical results show that the transition involves logarithmic singularities
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Because of their role in the analysis of complex b
havior in natural phenomena, coupled dynamical syste
have attracted great attention in the last decade. Arra
of coupled elements have been used as models of co
plex extended systems [1], and globally coupled ensemb
[2,3] have been used to represent systems driven by lo
range interactions, such as neural networks [4]. It has be
shown that in globally coupled dissipative systems form
by identical elements the typical form of collective beha
ior is synchronization [2–5]. Above a critical value o
the coupling strength, all the elements approach asympt
cally the same orbit. The appearence of this kind of coh
ent, condensed state is analogous to a phase transition,
the critical point is determined by the Lyapunov exponen
of the individual dynamics of each element [3,5].

As described above, synchronization is not possible
conservative systems. In Hamiltonian ensembles, Lio
ville’s theorem prevents the full collapse of the orbits
since volume must be preserved in phase space. Coup
Hamiltonian elements, therefore, should display a differe
class of collective evolution [6]. Though globally couple
Hamiltonian ensembles could provide a suitable model
studying many-body mechanical systems with long-ran
interactions, the analysis of their collective behavior has
ceived relatively less attention. However, it has recen
been shown that they can exhibit forms of weak synchr
nization [6–8].

The goal of this Letter is to point out a generic form o
collective behavior in coupled Hamiltonian systems, whic
we have numerically found to occur both in time-discre
and time-continuous dynamics, for ensembles of two
more elements with regular or chaotic orbits. We ha
also been able to analytically find such behavior for a tw
element system in the action-angle representation, i.e.,
nonchaotic orbits.

In order to describe this form of collective behavio
by means of an example, let us first consider a coup
pair of identical two-dimensional (2D) Hamiltonian ele
ments with coordinates�x1, y1� and �x2, y2�, respectively.
The corresponding phase space is thus four dimensio
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However, since we are interested in analyzing the effe
of coupling on the individual dynamics of each eleme
it is convenient to “project” the state of the full system
onto the one-element space. More precisely, we study
two trajectories���xi�t�, yi�t���� (i � 1, 2) on the�x, y� plane.
We find that, for initial conditions on different trajecto
ries, the regions of the plane covered by the two orbits
not intersect when the coupling intensity is small. As t
coupling intensity grows, however, these regions beco
broader and approach each other. Then, at a critical c
pling the two regions suddenly merge into a single regi
of the plane. From then on, the two orbits will (almos
always lie in the same domain. Although they never co
cide simultaneously at the same point of the plane, eac
them eventually passes arbitrarily close to any point visi
by the other. A closer analysis of the orbits above the cr
cal coupling shows that they define identical invariant me
sures [9] on the portion of the plane that they share. Th
we call this form of coherent evolutionmeasure synchro-
nization (here synchronizationis understood in a broad
sense). Measure synchronization is observed for any c
pling larger than the critical point, except at some narro
windows where it breaks down and the orbits separate fr
each other.

To avoid discretization errors, most of our numeric
realizations of coupled Hamiltonian systems involve ma
Hamiltonian maps are characterized by their simplec
structure [10]. A well-known example is the 2D standa
map on the torus�0, 2p� 3 �0, 2p�,

x�t 1 1� � x�t� 1 y�t� 1 a sinx�t�, mod 2p ,

y�t 1 1� � y�t� 1 a sinx�t�, mod 2p ,
(1)

wherea is a nonlinearity parameter. For moderately lar
values ofa this map exhibits both regular quasiperiod
orbits and chaotic evolution, depending on the init
conditions [10].

The form of global coupling usually employed wit
maps [3], which is inherently dissipative, cannot be appli
to Hamiltonian systems without destroying their conserv
tive character. Instead, we introduce coupling by mea
© 1999 The American Physical Society 2179
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of an additional Hamiltonian map, to be successively ap-
plied to the system at each time step, after the individual
evolution map (1) has acted. In other words, we apply at
each time step the composition of the individual evolution
and coupling. If both maps are Hamiltonian, their compo-
sition is in turn Hamiltonian. Global coupling between N
maps �xi , yi� (i � 1, . . . , N) is here given by the simplectic
recursion equations

xi�t 1 1� � xi�t� ,

yi�t 1 1� � yi�t�

1
K
N

X

j

sin�xj�t� 2 xi�t��, mod 2p , (2)

where K is the coupling intensity. This form of coupling
is similar to the interaction usually imposed on systems
of globally coupled oscillators in the phase approximation
[2,7] and on the global coupling used in continuous Hamil-
tonian systems [6], where it represents an effective inter-
action potential.

We have begun by considering a pair of coupled stan-
dard maps with a � 21.2. Recalling that in Hamiltonian
dynamical systems initial conditions act as independent ad-
ditional parameters for each orbit, we have first taken the
initial conditions of the two maps in the zone of regular,
nonchaotic evolution, ���x1�0�, y1�0���� � �0.2807, 20.0802�
and ���x2�0�, y2�0���� � �20.1471, 0.0134�. In the absence of
coupling, K � 0, these initial conditions correspond to two
different quasiperiodic orbits, which cover closed curves in
the �x, y� plane (see Fig. 1a). For K . 0 these two curves
become 2D rings, as a result of the increase of the effective
dimension of the whole Hamiltonian system. As K grows
both rings widen in such a way that the external border of
the inner ring approaches the internal border of the outer
ring. Note in Fig. 1b that the respective densities are larger
at those borders. At the point Kc � 3.18 3 1023 at which
the rings would come into contact a sudden change occurs.
As advanced above, the two regions merge into a single
ring which is now covered by both orbits with the same
density, i.e., defining the same invariant measure (Fig. 1c).
Just above Kc, the 2D volume of this single ring is given by
the sum of the volumes of the two rings just below the tran-
sition. Thus, it can be said that at the transition each ele-
ment invades the domain occupied by the other. Measure
synchronization is maintained for larger coupling intensi-
ties, except for some narrow intervals of K where the re-
gions occupied by the two elements suddenly separate from
each other (Fig. 1d). These desynchronization windows,
which are probably related to occasional frequency reso-
nances, are reminiscent of the stability windows of chaotic
systems. We have observed the same kind of qualitative
behavior for many other pairs of regular orbits, including
the islands of stable evolution. The critical coupling in-
tensity Kc, however, depends strongly on the chosen initial
conditions.

Coupling a chaotic orbit with a regular orbit or two
chaotic orbits produces essentially the same scenario. We
2180
have taken initial conditions from the chaotic “sea” sur-
rounding one of the main chain of stability islands, where
the orbits cover a 2D ringlike region even for K � 0. As
K grows, the regions covered by the orbits widen and even-
tually merge, as described for two regular orbits. It is inter-
esting to stress that coupling has no effect on the regularity
of the evolution, at least, in connection with the transition
to measure synchronization. Measurements of the Lya-
punov exponents show that, typically, the coupled system
is chaotic for small K if at least one of the orbits is chaotic
for K � 0 and is regular if the two uncoupled orbits are
regular. For larger K , the evolution can alternate between
chaos and regularity, but the transitions are not related to
changes in synchronization. Thus, Lyapunov exponents
seem to be insensitive to the synchronization state and are
therefore not suitable order parameters for characterizing
the transition.

Along both the regular and the chaotic orbits consid-
ered above, which evolve on ringlike regions of the �x, y�
plane, it is possible to define a phase which approximately
describes the state of each element at a given time. This
can be done on the same lines as the phase approxima-
tion used for coupled limit-cycle systems [2]. Under an
appropriate (linear) variable change, the linear part of the
standard map (1) can be transformed into a pure rota-
tion. Up to nonlinear corrections, thus, the rings covered
by the orbits are circular. The phase fi�t� of each ele-
ment can be simply defined as the angle determined by the
segment from the origin to the position of the element at
time t and, for instance, the y axis. Numerical realizations
show that the difference f�t� � f1�t� 2 f2�t� exhibits a

FIG. 1. Density plots of the invariant measures defined by
two coupled standard maps on the one-element plane, for four
values of the coupling intensity. (a) K � 0, no coupling;
(b) K � 3.1 3 1023, below the transition point; (c) K �
3.4 3 1023, above the transition point; (d) K � 1.2, within
a desynchronization window.



VOLUME 83, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 13 SEPTEMBER 1999
qualitative change when the transition to measure synchro-
nization takes place. In fact, below the critical point, when
the two orbits evolve in nonoverlaping domains, the phase
difference grows (or decreases), in average, linearly with
time, f�t� � ht 1 f0. Naturally, this is a consequence
of the fact that the orbits have different main frequencies.
On the other hand, when the two orbits are synchronized
and share the same domain, the phase difference oscillates
with a characteristic frequency f around a constant value,
f�t� � f�t 1 2p�f�. This suggests defining two order
parameters for the synchronization transition, namely,

h � j lim
t!`

t21f�t�j , (3)

and f as the main Fourier component of f�t�. Note that
f vanishes below the transition whereas h vanishes above
the transition. Figure 2 shows measurements of the two
order parameters as a function of the coupling intensity for
the pair of regular orbits considered above. Near K � Kc

both show a characteristic critical-like behavior, although
the way they approach zero at the critical point is particu-
larly abrupt. In fact, we were unable to determine a critical
exponent from the numerical data. The analytical results
presented below suggest that this transition could actually
correspond to a nonalgebraic, logarithmic singularity.

Measure synchronization can be analytically ex-
plained under simplified conditions, for a pair of coupled
two-dimensional time-continuous Hamiltonian sys-
tems in the action-angle (u, v) representation [10],
i.e., for regular orbits. In the following we show that
many of the features observed in numerical realiza-
tions are reproduced, at least qualitatively, by this ap-
proach. Consider the Hamiltonian H �u1, u2, v1, v2� �
�v2

1 1 v
2
2��2 2 K cos�u2 2 u1��2. This corresponds

to two identical dynamical elements with Hamiltonian
H �u, v� � v2�2 coupled through their angle variables
with an interaction weighted by the constant K . The
corresponding canonical equations are

FIG. 2. The order parameters h and f defined below and
above the critical point Kc � 3.18 3 1023 as a function of the
coupling intensity, from numerical realizations for two coupled
standard maps. Inset: The order parameters for system (4), as
calculated from the exact analytical solution for a set of initial
conditions with the same critical point as above.
�u1 � v1, �v1 �
K
2

sin�u2 2 u1� ,

�u2 � v2, �v2 �
K
2

sin�u1 2 u2� .
(4)

For K � 0, ui grows at constant rate vi . In the 2D
representation where u is the polar angle and v is the
radius, the two uncoupled orbits are thus circular, with
constant radius and angular velocity.

Taking into account that, from Eqs. (4), v1�t� 1

v2�t� � v1�0� 1 v2�0� � V (constant) and thus u1�t� 1

u2�t� � u1�0� 1 u2�0� 1 Vt, the equations can be re-
duced to a 2D system for the variables j�t� and
n�t�, defined by j�t� � u1�t� 2 u2�t� and v1,2�t� �
v1,2�0� 6 n�t�:

�j � v0 1 2n, �n � 2
K
2

sinj , (5)

with v0 � v
0
1 2 v

0
2 . Differentiating the first of

these equations and replacing the second, we get j̈ 1

K sin j � 0, i.e., Newton’s equation for a pendulum,
which can be exactly solved in terms of elliptic functions
for given initial conditions j�0� � u1�0� 2 u2�0� and
�j�0� � v1�0� 2 v2�0�. A first integral of this equa-
tion is E � �j2�2 2 K cosj, where the constant E �
�j�0�2�2 2 K cosj�0� is the total energy. As is well
known, a pendulum can exhibit two qualitatively different
kinds of orbits. For large energies (E . K) the orbits
are rotations, whereas for small energies (E , K) the
pendulum oscillates around the equilibrium point j � 0.
In the rotations, j increases (or decreases) monotonically
while j �jj oscillates between the two extreme valuesp

2�E 6 K�. On the other hand, in the oscillations both
j and �j evolve symmetrically around zero. The orbit
with E � K acts as a separatrix between the two regimes.
For given initial conditions for ui and vi this separatrix
occurs at a critical value of the coupling intensity,
given by

Kc �
�j�0�2

2�1 1 cosj�0��
. (6)

Rotations and oscillations occur for K , Kc and K .

Kc, respectively. Note that E � Kc 1 �Kc 2

K� cosj�0�.
Let us now translate these results in terms of the evo-

lution of the original variables, in particular, of v1�t� and
v2�t�. These can be written as v1,2 � �V 6 �j��2. For
sufficiently small values of K , �j performs small oscilla-
tions with amplitude of order K�Kc around

p
E �

p
2Kc.

The frequencies v1 and v2 oscillate then around two well-
separated values V�2 6

p
Kc�2. As long as K , Kc,

in fact, the two frequencies vary within nonoverlaping
intervals �V�2 1

p
�E 2 K��2, V�2 1

p
�E 1 K��2�

and �V�2 2
p

�E 2 K��2, V�2 2
p

�E 1 K��2�, re-
spectively. When K tends to the critical value, however,
both the lower limit of the upper interval and the upper
limit of the lower interval approach V�2. As soon
as K overcomes Kc, a sudden change occurs. Now,
2181
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�j oscillates around zero with amplitude
p

2�E 1 K�
and thus both v1 and v2 vary within the same interval
�V�2 1

p
�E 1 K��2, V�2 2

p
�E 1 K��2�. The two

intervals of frequency variation have completely merged
into a single interval.

Recalling that vi represents the radius of the orbit of
each element, we see that the continuous system (4) closely
reproduces the behavior observed for two coupled standard
maps. For small coupling intensity, the two orbits evolve
on nonoverlaping circular rings whose borders approach
each other as K grows. At the critical point the two
rings come into contact and collapse into a single ring
covered by both orbits. Note that (6) predicts that the
critical coupling would strongly depend on the initial
conditions, as observed in the numerical realizations for
standard maps. It can be readily shown from the symmetry
of Eqs. (4) that, once the two elements share the same
region, their orbits define identical invariant measures on it.
Moreover, the measure profiles predicted below and above
the transition are qualitatively similar to the ones observed
for the standard maps, Figs. 1b and 1c, with maxima in
the inner zones of the accessible regions. Details will be
given in a forthcoming publication [11].

For system (4), it is also possible to exactly obtain
the order parameters defined above in terms of the
phases along the orbits. In fact, the phase difference is
here f�t� � j�t�, which can be exactly given in terms
of elliptic integrals. We obtain h � p

p
E 1 K�p

2K�
p

2K��E 1 K�� and f � p
p

E 1 K�p
8F �arccos�2E�K��2,

p
2K��E 1 K��, where F �w, k�

is the elliptic integral of the first kind, and
K �k� � F �p�2, k� is the corresponding complete
elliptic integral. Near the transition point, both order
parameters exhibit the same critical behavior:

h � 2f � p
p

Kc�jjjlnjK 2 Kcj jjj . (7)

This logarithmic singularity contrasts with the typical
power-law dependence jK 2 Kcj

g near critical points in
other transitions. Remarkably enough, it is the same
critical behavior as found in the 2D Ising model [12]. The
order parameters h and f vanish for K ! Kc much more
abruptly than in ordinary transitions, corresponding to a
singular limit g ! 01 for the critical exponent. This is
again in agreement with the results for coupled standard
maps, shown in Fig. 2. In the inset to that figure, we show
h and f for system (4) near the critical point. Note the
close similarity with the numerical results.

The fact that measure synchronization occurs in the
action-angle system (4) strongly suggests that this kind of
coherent evolution is a general property of globally cou-
pled Hamiltonian systems, at least, for regular orbits in
time-continuous dynamics. Indeed, any regular Hamil-
tonian system can be given in the action-angle represen-
tation by means of a suitable canonical transformation.
Although the form of coupling in (4) is not generic, it
is expected to represent more general situations. Criti-
2182
cal properties depend in fact on the form of the interac-
tion potential at its maxima only. Any regular potential
with quadratic maxima should therefore give rise to the
same kind of transition. We have numerically checked
that the same critical phenomenon occurs for a pair of
coupled point masses in the usual space-momentum vari-
ables, with Hamiltonian H � �p2

1 1 p2
2��2 1 V �x1� 1

V �x2� 1 K�x1 2 x2�2�2 and V �x� � 2x2�2 1 x4�4 [6].
Moreover, the numerical results quoted above show that
chaotic orbits exhibit identical behavior.

Finally, we have performed preliminary numerical real-
izations of several (N . 2) standard maps coupled as in
(2). Under certain conditions, we have observed that the
elements show measure synchronization by pairs as the
coupling intensity is increased. Typically, the closer two
orbits are for K � 0 the smaller is the value of K at which
they merge. This behavior is, however, not completely
general. For given initial conditions there are pairs of or-
bits which simply overlap as coupling increases. Never-
theless, we have always found a value of K at which all
the elements share a single region of the �x, y� plane. For
sufficiently strong coupling, then, measure synchroniza-
tion does occur and involves the whole Hamiltonian en-
semble. We thus conjecture that measure synchronization
is a generic feature of the dynamics of globally coupled
Hamiltonian systems. The characterization of this kind of
collective behavior in large systems and the study of the
transition to measure synchronization is the subject of work
in progress.
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