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Random matrix theory predicts parametric correlations for chaotic or disordered systems which are as
universal as their spectral counterparts. However, an experimental verification of parametric correlations
is, in the vast mgjority of systems, a difficult task, because the motion of individual levels has to be
followed as an external parameter is varied. We present the first statistically highly significant result

for a parametric correlator that uses solely experimental information.

To this end, we measure the

motion of acoustic resonances in quartz blocks as a function of its uniform temperature. We find some
deviation between theoretical prediction and experimental results whose possible origin is discussed.

PACS numbers: 62.30.+d, 03.40.Kf, 03.65.Sq, 05.45.-a

There is overwhelming evidence for the Bohigas
Gianonni-Schmit conjecture [1] stating that the spectral
fluctuations of a quantum system whose classical coun-
terpart is fully chaotic are described by random matrix
theory (RMT) [2]. Thisistrue for the energy correlators
on the scale of the local mean level spacing up to a scale
which is set by semiclassical dynamics. In particular, if
the system is invariant under time reversa and free of
Kramers degeneracies, the fluctuations are modeled by the
Gaussian orthogonal ensemble (GOE). Furthermore, it has
been shown that the statistical concepts of quantum chaos
do also apply with high accuracy to classical waves, such
as elastomechanical or electromagnetic waves in three
dimensions; for areview, see Ref. [3]. Thisisremarkable
because these systems show, unlike the scalar Schrédinger
equation, mode conversion, i.e., ray splitting, and have in
general different boundary conditions.

Do chaotic systems possess observables other than en-
ergy correlators which aso show a high degree of univer-
sality? Moreover, if the answer is in the affirmative, do
these features carry over to classical wave phenomena? In
recent years, it has been shown that the parametric motion
of energy levels in quantum systems [4] and the paramet-
ric correlations resulting thereof do show universal fea
tures; see the recent review in Ref. [3]. We consider a
system as afunction of some parameter X, such as geomet-
ric shape, pressure, temperature, etc. It isassumed that the
system is fully chaotic and its spectral fluctuations are de-
scribed by the GOE for every fixed value of X. Since the
Wigner—von Neumann level repulsion governs the spec-
trum of chaotic quantum systems, a plot of the eigenen-
ergies E,(X),n = 1,2,... versus X shows avoided level
crossings. The satistics of this “level motion” exhibits
universal characteristics.

Unfortunately, a statistically significant measurement
of those parametric correlations is a highly nontrivia
task: to experimentally determine the functions E,(X),
high resolution spectra have to be measured for various,
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preferably many, different values of the parameter X.
We are not aware of any such measurement. The work
of Simons et al. [5] on the hydrogen atom in a strong
magnetic field is a combined experimental and theoretical
study. Nevertheless, it is the strongest available test
of parametric correlations in a real system. Most of
the other evidence is numerical, such as the study of
irregularly shaped quantum dots by Bruus et al. [6]. In
elastomechanical systems, however, both requirements can
be met: high resolution and a fine scan over the external
parameter X. In this Letter, we present the first full-
fledged experimental study of a parametric correlation
function. Our system is a resonating, monocrystalline
quartz block. As the external parameter X we use the
uniform temperature of the block, 7. The six independent
elastic constants vary at considerably different rates with
temperature [7]. Asthese constants determine the density
of the material and thereby the velocity of elastic waves,
the spectrum of the block aso changes with temperature T
Thus, by measuring spectra at different temperatures, we
experimentally obtain the functions E,(X), where, in our
case, E, stands for afrequency and X = T. In studying
this system, we also address the second of the questions
posed at the beginning of the previous paragraph.

Universal features can be expected only on the scale
of the local mean level spacing D(X) at any given X,
implying that the energies have to be unfolded by setting
£,(X) = E,(X)/D(X). The parametric level motion itself
has to be unfolded, too. The appropriate scaleis given by
the level velocity de,(X)/dX. The new, dimensionless
parameter in the interval [X;, X ] is defined by

Xy
x = f Jden(xX)/dx Py dx . )
X;

where the average is performed over al levels. In Ref. [8]
the universality of this parameter unfolding is discussed
in detail. Because of the importance of the avoided level
crossings, it is useful to study the unfolded curvatures
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k, = m 'd*e,/dx*. Zakrzewski and Delande [9] con-
jectured the universal form

1
2(1 + k2)3/2 @)

for the distribution of these curvatures which was analyti-
cally confirmed by von Oppen [10]. We suppressthelevel
index n. Sinceamuch longer range must be covered in pa-
rameter space, it is harder to measure the velocity-velocity
correlator introduced by Szafer and Altshuler [11],

() = <d8n(xd_ x/2) de,(x i— x/2)>. 3
x dx

After averaging over al levels, it is trandationally invari-

ant, i.e., depends only on the separation x between two

points in the parameter space, but not on the midpoint x.

In the measurements, we used a monocrystalline rectan-
gular quartz block with dimensions 14 X 25 X 40 mm?.
An octant of radius 8.0 mm was removed from one cor-
ner such that the block acquired the shape of a three-
dimensiona Sina billiard. This geometry ensured, first,
a full breaking of al D3 point-group symmetries present
in the crystal and, second, spectral fluctuation proper-
ties of GOE type. The experimental setup described in
Refs. [12,13] was employed, which guarantees a very
high resolution of the data. The quality factor 0 = f/Af
where f is the frequency and Af the width of a given
resonance is, on average, roughly 10°. This setup is sup-
plemented with a high quality thermostat which controls
the temperature inside the pressure chamber with a preci-
sion of better than 0.01 °C during the measurements. A
description will be given elsewhere [14]. To trace the
motion of the levels as a function of the temperature, we
measured a set of transmission spectra, al in the same
frequency interval, at different, but fixed and controlled
temperatures. For the accumulation of data, the optimal
window in the two dimensiona space defined by fre-
guency and temperature had to be chosen. Importantly,
the strongly increasing level density sets an upper limit
for the frequency. It turned out to be most efficient to
measure at temperatures ranging from 45 to 145 °C with
increments of 1.0 °C in the frequency interval from 980 to
1071 kHz. Thus, 101 spectra were taken, each containing
709 resonances to be traced. Thefirst of these resonances
was approximately the 2400th, counted from the ground
state.

To remove the dependence on the level density, each
spectrum is unfolded individually asin Ref. [12]. The ex-
perimental cumulative frequency density N( f), the “stair-
case’ is fitted with a third order polynomia N,.(f),
which then defines the dimensionless frequency scale. To
check that the spectra exhibit random matrix fluctuations
on this scale, we work out the spacing distribution and
the spectral rigidity. Both agree with the GOE predic-

tion, the latter up to interval lengths of about Lk =
50 in units of the mean level spacing. However, there is

P(k) =

2172

till another structure in our data. In Fig. 1, the difference
N(f) — Nay(f) is plotted. The large scale oscillations
are not consistent with pure random matrix fluctuations—
they are rather due to the acoustic equivalence of “bounc-
ing ball” modes [15]. In quantum chaos, those modes can
be understood in a semiclassical approximation as a fam-
ily of orbits of a particle bouncing between parallel walls.
The corresponding modes in our system are richer and
more complicated due the existence of longitudinal and
transverse waves and the anisotropy of the crystal. As
there is no theory available, we have to remove this struc-
ture phenomenologicaly. We use a Fourier transform
method similar to the one described in Ref. [16]. The
Fourier transform shown in Fig. 1 reveals the influence of
the bouncing-ball-like modes as big peaks near the origin.
We choose a cutoff of 7. = 100 us and transform these
peaks back into frequency space. This gives a smooth
approximation of the oscillations Ny (f) which is also
subtracted from N(f) — N,v(f). The spectra rigidity
worked out for this spectrum shows good agreement with
GOE prediction up to interval lengths of about Litx = 80
in units of the mean level spacing. Since this number is
dlightly dependent on ¢., we use it only as a guideline
in studying the influence of the bouncing-ball-like modes
on the statistical observables. We mention in passing
that this intermediate result actually improves the confir-
mation of GOE spectral fluctuations in elastomechanical
systems performed in Ref. [12]. In particular, since the
level motion is followed over a sizable parameter range,
we are confident that no single level was missed in the
experiment.

After the unfolding, a fitting procedure is used to
determine the resonance positions. The thus obtained
level motion versus temperature isillustrated in Fig. 2 by
showing seven of the all together 709 functions ¢,,(T). To
construct the dimensionless parameter x defined above, al
functions ¢, (T) arefitted and the average ((de,(T)/dTT?)
is evaluated. Since no theoretical prediction for an
individual function ¢,(T) exists, polynomial fits are

0.60

—~ l4
0.50 s .
z
. 0.40 a9 1
o E =27
2 0.30 Z 4 —
* 0.20
0.10}
0.00 . . ‘ .
O 100 200 300 400 500
Time (us)

FIG. 1. Fourier transform of the difference between experi-
mental cumulative frequency density N(f) and its polynomial
part N, ( f), this difference is shown as an inset.
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FIG. 2. Experimentaly obtained motion of a set of seven
consecutive levels, together with a fit.

used. The fitting algorithm is combined with a noise
reduction scheme. By repeating this procedure many
times in different ways, it was carefully checked that
the noise reduction had no influence on the various
statistical observables that we analyze. Finaly, the level
positions ¢,(x) are obtained as functions of the unfolded
temperature x.

Having performed the unfolding procedures for both
the frequency and the temperature, we can compare
statistical observables with the predictions of random
matrix theory. We checked that the distribution of the
level velocities de,(x)/dx is well approximated by a
Gaussian, in agreement with the GOE prediction [3].
Figure 3 displays the distribution of the curvatures k,
defined above. For large |k|, up to values of |k| = 25,
the experimental result is well described by the 1/|k|?
tal of P(k) in Eq. (2). This meets our expectation,
because this tail is directly related to the linear behavior
of the spacing distribution for small spacings [17]. Thus,
this is consistent with the claim made above that the
spectral fluctuations are of the GOE type. In the center
of the distribution, however, a sizable deviation from the
prediction (2) can be seen. Li and Robnik [18] show that
such deviations in the center of the distribution can be due

to a nonuniversal unfolding. However, we do not expect
such effects to play an important role because we use the
unfolding procedure (1).

As our most important result, Fig. 4 shows the velocity-
velocity correlator ¢(x) defined in Eq. (3). To obtain this
statistically highly significant result up to x = 1.8 re-
quired the high resolution of our experimental setup. The
experimental result is compared with the numerical simu-
lation of random matrices performed by Mucciolo [19].
It should be stressed that this numerical result is obtained
after the twofold unfolding described above. Thus, it is
independent of the distribution function for the matrix ele-
ments and of the global features of the level motion, i.e.,
universal. Intheregion betweenx = 04 andx = 1.1, a
sizable deviation between theory and experiment can be
seen. In Ref. [5], a qualitatively similar deviation was
seen in the case of the hydrogen atom in a strong mag-
netic field. It was argued that quasiregular features could
be a candidate for an explanation of this effect. In our
case, such effects are less likely to play arole. We stress
that we removed the bouncing-ball-like modes which can
be viewed as such quasiregular features in our system.
However, these modes do have a visible effect on c(x).
To demonstrate this, Fig. 4 also shows the experimental
c(x) for the spectra that still contain the bouncing-ball-
like modes, i.e., the unfolding was done with a polyno-
mial only. As can be seen, there is a deviation which is
qualitatively different, most strikingly, the correlation dies
out at smaller values of x. In any case, the result for c(x)
after removing the bouncing-ball-like modes is the one
that has to be compared with the theoretical prediction be-
cause the GOE describes chaotic fluctuations only. We
emphasize that the deviation between theory and experi-
ment is robust. We also tried other unfolding techniques.
In particular, the deviation is robust against variations of
the Fourier cutoff ¢, used to remove the bouncing-ball-
like modes.
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FIG. 3. Experimentally obtained curvature distribution P(k),
shown as crosses, and the analytical GOE result (2) as a solid
line. There is a deviation in the center, whereas the tails
agree well.
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FIG. 4. Experimentally obtained velocity correlator c(x) as
crosses versus unfolded temperature x, compared with the
numerical GOE result of Ref. [19]. There is a considerable
deviation for medium values of x. Asan inset, the experimental
¢(x) is shown for the spectra from which the bouncing-ball-like
modes have not been removed.

Because of the unfolding in the parameter space, the
deviations cannot be due to specific effects associated
with the temperature. Nevertheless, to definitely exclude
this possibility, we aso performed a second experiment,
in which the mass of the block was used as the external
parameter. Using 10 um size powder, thin layers of
quartz were ground off the block. However, we found
exactly the same results as in the first experiment.
Furthermore, we performed yet another measurement of
¢(x), but in a different system [20]. We used aluminum
plates and, once more, found the same results. We
notice that there are no bouncing-ball-like modes in these
plates. Thus, we are led to the conclusion that bouncing-
ball-like modes, athough important for the parametric
correlations, cannot be responsible for the deviation under
consideration. Itsoriginisstill unclear. It is possible that
our system is simply not perfectly well described by the
models of Refs. [9,10]. We emphasize that this deviation
cannot be obtained in the random matrix model by
simply modifying the distribution function of the matrix
elements. Because of universality, such changes will
aways be absorbed by the twofold unfolding, provided
those additional terms do not generate scales comparable
to the mean level spacing or the loca scale of the
parameter motion. More experimental information is
now becoming available by a recent study of parametric
correlations in microwave billiards [21].

In conclusion, we have presented a detailed experi-
mental study of the statistics of parametric level motion.
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Thanks to our high resolution setup, the statistical signifi-
cance of our results, in particular for the velocity-velocity
correlator, far exceeds that of any other study that uses
solely experimental information. For the curvature dis-
tribution and the velocity-velocity correlator, we found
deviations between theory and experiment, although the
spectral correlators are of GOE type on large scales. We
show that the latter is strongly influenced by bouncing-
ball-like modes. Thus, the parametric statistics seems to
be somewhat less universal than the spectral correlators.
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