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Surface Vibrations and the Pairing Interaction in Nuclei
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The induced pairing interaction arising from the exchange of low-lying collective surface vibrations
among nucleons moving in time reversal states close to a Fermi energy is found to lead to values of the
pairing gap which constitute a large fraction of those experimentally observed.

PACS numbers: 21.30.Fe, 21.60.Jz, 27.40.+z, 27.60.+ j
It is well established that nucleons moving close to the
Fermi energy in time reversal states have the tendency to
form Cooper pairs which eventually condense [1]. This
phenomenon, which parallels that which is at the basis
of low-temperature superconductivity [2], modifies in an
important way the nuclear properties.

While in the case of low-temperature superconductivity
the attraction among electrons is generated by the exchange
of lattice phonons, in the nuclear case the origin of the
pairing interaction is related to the 1S0 phase shift of the
free nucleons, which is attractive at low relative momenta.
Within the spirit of the BCS approximation [2] the matrix
elements of the pairing interaction in nuclei are, in general,
approximated by a constant inversely proportional to the
mass number of the nucleus (G � 25�A MeV). The
consequences of this model have been extensively studied
(cf., e.g., Ref. [1] and references therein).

In keeping with the fact that the free nucleon-nucleon
interaction is strongly renormalized in nuclei, there exists
a long tradition in the study of core polarization of the
effective two-nucleon interaction (cf. Refs. [3–7] and ref-
erences therein), in particular in the case of J � 0, T � 1
pairs (pairing correlations) where the role of exchange
of high-lying quadrupole and hexadecapole modes (giant
resonances) has been systematically studied (cf., e.g.,
Ref. [8] and references therein).

In the present paper we shall show that Cooper pair
formation in nuclei can particularly benefit from the
exchange of low-lying collective surface vibrations (cf.
Refs. [1,9,10]), a mechanism which gives rise to pairing
gaps which account in most cases for 50%–70% of the
experimental values. Calculations have been carried out
for a number of isotopic chains: A

20Ca, A
22Ti, and A

50Sn. The
results provide insight into the role the induced interaction
plays in neutron and proton pairing correlations in nuclei.
Calculations have also been carried out for the case of
42
21Sc and found to lead to strong proton-neutron pairing
correlations.

The basic ingredients needed in the calculation of the in-
duced pairing interaction (cf. inset of Fig. 1) are the single-
particle energies en and the corresponding wave functions
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fn� r!�, as well as the energies h̄vl�n� and transition
probabilities B���El; 0 ! l�n���� of the vibrational modes.
The quantities en and fn� r!� were calculated assuming
nucleons to move in an average field containing a spin-
orbit term and parametrized in terms of a Saxon-Woods
potential, with values of the depth, radius, diffusivity,
and spin-orbit strength taken from Ref. [11]. The vibra-
tions were calculated by diagonalizing multipole-multipole
interactions within the framework of the random phase
approximation (RPA) in the particle-hole basis provided
by the solution of the single-particle Schrödinger equa-
tion. Vibrational states with multipolarity and parity lp �
21, 32, 41, 52 and collecting more than 90% of the en-
ergy weighted sum rule were calculated, and the cor-
responding energies h̄vl�n� and transition probabilities
B���El; 0 ! l�n���� � b

2
l�n� were determined. Typical val-

ues of these quantities are h̄vl � 1 2 MeV (low-lying
surface vibrations) and h̄vl � 15 20 MeV (giant reso-
nances), and bl � 0.1, for both types of collective modes.

With the knowledge of the quantities discussed above,
the particle-vibration coupling matrix element (cf., e.g.,

FIG. 1. State dependent pairing gap Dn [cf. Eq. (3)] for the
nucleus 120Sn, calculated making use of the induced interaction
defined in Eq. (2) (cf. inset, where particles are represented by
arrowed lines and phonons by a wavy line).
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Refs. [1,12])

Mn
n,ln0 �

�n0kRo
≠U
≠r Ylkn�

p
2jn 1 1

bl�n�p
�2l 1 1�

(1)

can be calculated. The quantities entering in the reduced
matrix element appearing in Eq. (1) are the nuclear radius
Ro , the derivative of the Saxon-Woods potential, and a
spherical harmonic of multipolarity l. Once these matrix
elements are known, one can calculate the induced pairing
interaction matrix elements (cf. inset of Fig. 1)

ynn0 � �� jn0mn0� � jn0m̃n0� jyj � jnmn� � jnm̃n��a.s.
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and thus determine the state dependent BCS pairing gap [2]

Dn � 2
X

n0

�2jn0 1 1�
2

Dn0

2En0

ynn0 . (3)

In the above equation the state j jnm̃n� is obtained by the
operation of time reversal on the state j jnmn�, while the
subscript a.s. indicates the normalized, antisymmetric state
of two particles. One of the factors of 2 in the numerator
of Eq. (2) arises from the antisymmetry while the other
factor of 2 is connected with the two time orderings of the
process depicted in the inset of Fig. 1. In keeping with the
fact that b

2
l�n� ø bl�n� we have used lowest (second) or-

der perturbation theory to calculate the induced interaction.
The quantity Eo � EBCS 2 Eunp is the pairing energy, the
difference between the BCS-ground state energy EBCS �P

n�2jn 1 1� �en 2 eF �V 2
n 1

P
n,n0��2jn 1 1� �2jn0 1 1��4	

�DnDn0�4EnEn0�ynn0 and the unperturbed ground state
energy Eunp �

P
en,eF

�2jn 1 1� �en 2 eF�. This is in
keeping with the fact that we use Bloch-Horowitz pertur-
bation theory [13], where the energy denominator is the
difference between the final energy of the system Eo and
the energy of the intermediate state en 1 en0 1 h̄vl�n�
�en � jen 2 eF j�. Equations (2) and (3) are thus coupled
and have to be solved self-consistently. Consequently,
the process in which two nucleons interact through the
exchange of a vibrational mode is iterated to infinite order.

In Fig. 1 we show the calculated state dependent pair-
ing gap for the nucleus 120Sn. The average value of the
matrix elements ynn0 appearing in Eq. (3) associated with
states lying around the Fermi energy is y � 20.14 MeV,
while the pairing energy Eo is equal to about 4 MeV. The
absolute value jyj is to be compared with the value of
the standard parametrization of the pairing coupling con-
stant G (�0.2 MeV for A � 120). The resulting pairing
gap around the Fermi energy is of the order of 1 MeV.
This result reproduces within 30% the empirical value of
1.5 MeV, obtained from the mass table [14] making use
2148
of the relation

D �
1
2 �B�N 2 2, Z� 1 B�N , Z� 2 2B�N 2 1, Z�	 ,

(4)

where B�N , Z� is the binding energy of the nucleus with
N neutrons and Z protons.

In Fig. 2, we show the value of the state dependent
pairing gap averaged over levels lying within an energy
interval of the order of 62D around the Fermi energy,
for a number of Sn isotopes in comparison with the
corresponding values obtained from Eq. (4). In all cases,
theory accounts for a consistent fraction of the empirical
values of the pairing gap. If one were to reproduce this
empirical value of D, one would need to add to ynn0 an
approximately constant quantity, which changes only
slightly from isotope to isotope, and whose average value
is Go � 0.06 MeV (i.e., parametrized as Go � x�A MeV
would have x � 7).

The question of the convergence of perturbation theory
in the case of finite nuclei has been previously discussed
in the literature, in particular within the framework of
the nuclear field theory [12,15]. It was found that the
useful expansion parameter is 1�V, V being the effective
degeneracy of the single-particle levels participating in
the collective vibration. As a rule (cf., e.g., [16]), the
lowest order contributions in 1�V were found to provide
an accurate approximation to the exact solution, provided
V $ 20. From detailed calculations carried out for

FIG. 2. Average value of the state dependent pairing gap
associated with levels lying close to the Fermi energy of A

50Sn
isotopes, calculated as discussed in the text, making use of the
pairing gap defined in Eq. (3), in comparison with the empirical
pairing gap [cf. Eq. (4)]. The results of two calculations are
shown, associated with RPA solutions which fit two different
sets of transition probabilities connecting the lowest-lying
quadrupole and octupole vibrations with the ground state. The
first set (also used in the calculation shown in Fig. 1 for 120Sn)
was taken from Ref. [26], and the corresponding result for
Dn denoted by Th. a (solid squares). The second set is from
Ref. [27], and the associated values of Dn are denoted by Th. b
(solid triangles).
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systems with two neutrons moving outside closed shells,
where a full diagonalization of the particle-vibration
Hamiltonian giving rise to the induced interaction is
also simple to carry out, we have found that the results
of perturbation theory agree within 10%–15% with the
“exact” results.

In Fig. 3 we display the results of calculations carried
out for the isotopes ACa and ATi, in comparison with the
corresponding results of Eq. (4). The average value of
ynn0 associated with levels lying close to the Fermi en-
ergy is, in this case, of the order of 20.2 MeV, while Eo

is of the order of 23 MeV. As in the previous case, the
induced interaction leads to pairing gaps which account for
a consistent fraction of the empirical value, and which fur-
thermore display a similar dependence with A, a behavior
which reflects the shell dependence of the collective sur-
face modes. In particular, the low predicted value of D in
50Ca as compared to 42Ca is due to the fact that the “core”
48Ca is more rigid than the core 40Ca. We have also de-
termined the induced proton-neutron pairing interaction in
42Sc, arising from the exchange of the low-lying collective

FIG. 3. Average value of the neutron pairing gap of the
A
20Ca isotopes and of the proton pairing gap of A

22Ti isotopes,
in comparison with the empirical pairing gap [cf. Eq. (4)].
The input experimental data used in the calculation of the
vibrational states were taken from Ref. [28]. The gap of the Ca
isotopes has been calculated making use of Eq. (3). In the
case of the Ti isotopes, the matrix of the induced interaction
was diagonalized. The empirical value of the pairing gap
was calculated making use of the relation D �

1
2 �B�N , Z 2

2� 1 B�N , Z� 2 2B�N , Z 2 1�	, the proton analogous to the
expression given in Eq. (4) and used to calculate the neutron
pairing gap.
surface vibrations of the core 40Ca. The calculated value
of 1.5 MeV (cf. also the result obtained for 42Ca, Fig. 2)
is close to the empirical value (1.6 MeV) obtained making
use of Eq. (4). Again, in all these cases (Ca, Ti, and Sc
isotopes), as in the case of Sn isotopes, the empirical values
of D calculated making use of Eq. (4) are well reproduced
making use of the pairing matrix elements ynn0 1 Go .

We have repeated the calculations described above
but this time including only the coupling of the lowest-
lying surface vibrations (n � 1, lp � 21, 32, 41, 52).
The calculated values of D coincide, in most cases, within
20%, with those obtained from the full calculation. The
main contributions arise from the exchange of low-lying
quadrupole and octupole collective vibrations. These
results may provide, at the microscopic level, insight into
and eventually justification for the success found by sur-
face and density dependent pairing interactions used in
the literature to describe the low-energy nuclear structure
(cf., e.g., Refs. [17–20]).

It is expected that, because the low-lying surface vibra-
tions are built, to some extent, by the valence nucleons,
the results discussed above will be somewhat modified by
properly taking into account the Pauli principle (cf. also
Refs. [12,15] and references therein) between the inter-
acting nucleons and the correlated particle-hole excita-
tions associated with the vibrational modes. To check this
point we have recalculated the pairing gap of 42Ca making
use of the phonons of the core 40Ca, obtaining a value of
0.9 MeV, a result which still accounts for about 60% of
the experimental value.

The induced pairing interaction constitutes also a basic
element in the study of the superfluidity of the inner crust
of neutron stars (cf. Ref. [21] and references therein).
Calculations of the associated pairing gap have been
carried out for infinite [22,23] and for semi-infinite
nuclear matter [24], thus neglecting finite size effects. A
consistent treatment of this phenomenon should, instead,
take into account the interplay between nuclei and the
sea of free neutrons in which they are immersed, that is,
make use of a calculational scheme as that developed in
Ref. [25]. Within this context, the contribution of high-
lying modes (giant resonances) to the induced interaction
is expected to be qualitatively similar to the estimates
carried out above for the case of isolated nuclei, while
that associated with the exchange of low-lying (collective)
surface vibrations should be very different. This is
because the properties of giant resonances should not
depend in any significant way on the fact that the system
is finite or not. On the other hand, the low-lying surface
modes are expected, in the case of nuclei immersed in a
sea of free neutrons, to be strongly modified, becoming
less collective than in the case of a free isolated nucleus.
In any case, a proper calculation of the pairing matrix
elements needed to describe superfluidity in the inner
crust of a neutron star is still an open problem.
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We conclude that the exchange of low-lying surface vi-
brations among nucleons moving in time reversal states
close to the Fermi energy gives rise to an induced pair-
ing interaction which leads to pairing gaps that account
for a consistent fraction of those experimentally observed.
This result is likely to have consequences in the analysis
of phenomena like the quenching of the pairing gap taking
place as a function of the angular momentum and of the en-
ergy (temperature) content of the nuclear system. In keep-
ing with these results, and because collective vibrations
couple democratically to all nucleons, regardless of the
isospin quantum number, the induced pairing force mecha-
nism is expected to lead to consistent proton-neutron pair-
ing correlations.
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