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Hard-Thermal-Loop Resummation of the Free Energy of a Hot Gluon Plasma
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We calculate the free energy of a hot gluon plasma to leading order in hard-thermal-loop perturbation
theory. Effects associated with screening, gluon quasiparticles, and Landau damping are resummed to
all orders. The ultraviolet divergences generated by the hard-thermal-loop propagator corrections can
be canceled by a counterterm which depends on the thermal gluon mass. The deviation of the hard-
thermal-loop free energy from lattice QCD results for T . 2Tc has the correct sign and roughly the
correct magnitude to be accounted for by next-to-leading order corrections.

PACS numbers: 12.38.Mh, 11.10.Wx, 12.38.Cy
Relativistic heavy-ion collisions will soon allow the
experimental study of hadronic matter at energy densities
that should exceed that required to create a quark-gluon
plasma. A quantitative understanding of the properties of
a quark-gluon plasma is essential in order to determine
whether it has been created. Because QCD, the gauge
theory that describes strong interactions, is asymptotically
free, its running coupling constant as becomes weak at
sufficiently high temperatures. This would seem to make
the task of understanding the high-temperature limit of
hadronic matter relatively straightforward, because the
problem can be attacked using perturbative methods.
Unfortunately, the perturbative expansion in powers of
as does not seem to be of any quantitative use even
at temperatures that are orders of magnitude higher than
those achievable in heavy-ion collisions.

The problem is evident in the free energy F of the
quark-gluon plasma, whose weak-coupling expansion has
been calculated through order a5�2

s [1,2]. An optimist
might hope to use perturbative methods at temperatures
as low as 0.3 GeV, because the running coupling constant
as�2pT � at the scale of the lowest Matsubara frequency
is about 1�3. However, the expansion in powers of a1�2

s
appears to converge only for extremely small values of
as. For example, if Nf � 6, the a3�2

s term is smaller
than the as term only for as , 0.075, which corresponds
to a temperature greater than 103 GeV. At temperatures
below 1 GeV, the corrections show no sign of converging,
although the convergence can be somewhat improved
by using Padé approximations [3]. It is clear that a
reorganization of the perturbation series is essential if
perturbative calculations are to be of any quantitative use
at temperatures accessible in heavy-ion collisions.

The poor convergence of the perturbation series is puz-
zling, because lattice gauge theory calculations indicate
that the free energy F of the quark-gluon plasma can be
approximated by that of an ideal gas unless the tempera-
ture T is very close to the critical temperature Tc for the
phase transition [4,5]. The deviation of F from the free
energy of an ideal gas of massless quarks and gluons is
less than about 25% if T is greater than 2Tc. Further-
more, the lattice results can be described surprisingly well
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for all T . Tc by an ideal gas of quark and gluon quasi-
particles with temperature-dependent masses [6].

The large perturbative corrections seem to be related
to plasma effects, such as the screening of interactions
and the existence of quasiparticles, which arise from the
momentum scale a1�2

s T . One possible solution is to
use effective-field-theory methods to isolate the effects
of the scale T [2,7], and then use a nonperturbative
method to calculate the contributions from the lower
momentum scales of order a1�2

s T and smaller. The
effective-field theory for the lower momentum scales is
a gauge theory in three Euclidean dimensions, and it can
be treated nonperturbatively using lattice-gauge-theory
methods. Such an approach has been used by Kajantie
et al. to calculate the Debye mass for thermal QCD [8].
One of the limitations of this approach is that it cannot
be applied to the real-time processes that are the most
promising signatures for a quark-gluon plasma.

An analogous convergence problem arises in the free
energy of a massless scalar field theory with a f4 inter-
action, and several approaches to this problem have been
proposed [9,10]. One of the most promising approaches
is “screened perturbation theory” developed by Karsch,
Patkós, and Petreczky [9], which involves a selective re-
summation of higher order terms in the perturbative ex-
pansion. This approach can be made systematic by using
the framework of “optimized perturbation theory” [11].
A mass term proportional to f2 is added and subtracted
from the Lagrangian, with the added term included non-
perturbatively and the subtracted term treated as a pertur-
bation. The renormalizability of the mass term guarantees
that the new ultraviolet divergences generated by the mass
term can be systematically removed by renormalization.
When the free energy is calculated using screened pertur-
bation theory, the convergence of successive approxima-
tions to the free energy is dramatically improved.

A straightforward application of screened perturbation
theory to a gauge theory such as QCD is doomed to
failure, because a local mass term for gluons is not gauge
invariant. However, there is a way to incorporate plasma
effects, including quasiparticle masses for gluons, into
perturbation theory in a gauge-invariant way, and that
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is by using hard-thermal-loop (HTL) perturbation theory.
This involves adding and subtracting HTL correction
terms to the action [12], treating the quadratic parts of the
added terms nonperturbatively and treating the remaining
terms as interactions. The resulting effective propagators
and vertices are complicated functions of the energies and
momenta. The nonlocality of the HTL correction terms
raises conceptual issues associated with renormalization,
since the ultraviolet divergences they generate may not
have a form that can be canceled by local counterterms.

In this Letter, we calculate the free energy of a
hot gluon plasma explicitly to leading order in HTL
perturbation theory. In spite of the complexity of the HTL
propagators, their analytic properties can be used to make
calculations tractable. Although complicated ultraviolet
divergences arise in the calculation, many of them cancel.
The remaining divergence is removed by a counterterm at
the expense of introducing an arbitrary renormalization
scale. With reasonable choices of the renormalization
scales, the deviation of the HTL free energy from lattice
QCD results for T . 2Tc has the correct sign and roughly
the correct magnitude to be accounted for by next-to-
leading order corrections.

Our starting point is an expression for the free energy
from the one-loop gluon diagram in which HTL corrections
to the gluon propagator have been resummed. In the
imaginary-time formalism, the renormalized free energy
can be written as

FHTL � 4�d 2 1�
ZX

�v2
n 1 k2 1 PT �

1 4
ZX

�k2 2 PL� 1 DF , (1)

where d is the number of spatial dimensions and DF is
a counterterm. The transverse and longitudinal HTL self-
energy functions are
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3
2

m2
g

v2
n

k2
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1 1
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n 1 k2

2ivnk
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∏
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2 1

∏
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where mg is the gluon mass parameter. The sum-integrals
in (1) represent T

P
n m32d

R
ddk��2p�d , where the sum

is over the Matsubara frequencies vn � 2pnT . If we
use dimensional regularization to regularize ultraviolet
divergences, DF cancels the poles in d 2 3 in the sum-
integrals and m is the minimal subtraction renormalization
scale. If we set PT � PL � 0, the free energy (1)
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reduces to that of an ideal gas of massless gluons: Fideal �
2�8p2�45�T4.

Standard methods can be used to replace the sums over
n in (1) by contour integrals in the energy v � ivn. The
integrands are weighted by the thermal factor 1��ebv 2

1�, and the contour encloses the branch cuts on the real
v axis. The arguments of the logarithms have branch
cuts associated with Landau damping that extend from
2k to 1k. The integrands also have logarithmic branch
cuts that end at the points v � 6vT �k� in the transverse
term and at v � 6vL�k� in the longitudinal term, where
vT �k� and vL�k� are the quasiparticle dispersion relations
for transverse gluons and longitudinal gluons (plasmons),
respectively. These dispersion relations are the solutions
to the following transcendental equations [13]:

v2
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0 � k2 1 3m2
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1 2
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2k
log
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vL 2 k

∏
. (5)

By collapsing the contours around the branch cuts, we
can separate the integrals over v into quasiparticle contri-
butions and Landau-damping contributions. These indi-
vidual contributions have severe ultraviolet divergences.
The divergences can be isolated by subtracting expres-
sions from the integrands that render the integrals finite
in d � 3 and then evaluating the subtracted integrals
analytically in d dimensions. If we impose a cutoff L

on k and v, there are power divergences proportional to
L4 and m2

gL2 and logarithmic divergences proportional
to m2

gT2 logL, m4
g log2L, and m4

g logL. The L4 diver-
gence is canceled by the usual renormalization of the
vacuum energy density. The m4

g log2L divergences can-
cel between the quasiparticle and Landau-damping con-
tributions to the transverse term. The cancellation can
be traced to the fact that PT in (2) is analytic in the
energy v � ivn at v � `. The temperature-dependent
m2

gT2 logL divergences cancel between the longitudinal
and transverse terms. This cancellation follows from
the identity 2PT 2 ��v2

n 1 k2��k2�PL � 3m2
g. The re-

maining divergences arise from integration over large
three-momentum and are canceled by the counterterm
DF in (1). In dimensional regularization, power diver-
gences are set to zero and the logarithmic divergence ap-
pears as a pole in d 2 3. In the minimal subtraction
renormalization prescription, it is canceled by the coun-
terterm DF � 29m4

g��8p2�d 2 3��.
Our final result for the free energy of the gluon plasma

to leading order in HTL perturbation theory is
FHTL �
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where m3 �
p

4p e2g�2m is the renormalization scale
associated with the modified minimal subtraction (MS)
renormalization prescription and g is Euler’s constant.
The first term in (6) is the free energy of an ideal gas
of transverse gluons with dispersion relation vT . The
second term is the free energy of an ideal gas of plasmons
with dispersion relation vL, with a subtraction that makes
it vanish in the high-temperature limit mg ø T . The
third term is a Landau-damping contribution that involves
angles fL and fT defined by
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∏
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where K2 � k2 2 v2 and L � log��k 1 v���k 2 v��.
Both fT and fL vanish at the upper end point k ! `

of the integral over k. At the lower end point k !
v, fT vanishes and fL approaches p. The terms in
(6) proportional to m2

gT2 and m4
g come from the zero-

point energies of the quasiparticles and from subtraction
integrals. In the high-temperature limit mg ø T , FHTL
can be expanded in powers of mg�T :

FHTL � Fideal
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where a � 3m2
g��4p2T2�. Only integer powers of a

appear beyond the a3�2 term. In the limit T ! 0 with
mg fixed, FHTL is proportional to m4

g:

FHTL !
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∂
m4
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This low-temperature limit is sensitive to the value of m3.
In particular, the coefficient of m4

g in (10) changes sign at
m3 � 0.717mg.

The free energy of a quark-gluon plasma in the high-
temperature limit has been calculated in a weak-coupling
expansion through order a5�2

s [1,2]. The result for a pure
gluon plasma with Nc � 3 is

FQCD � Fideal

∑
1 2
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4

a 1 30a3�2
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2
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where a � as�2pT ��p . In the limit as ! 0, the gluon
mass parameter mg is given by m2

g � �4p�3�asT2. The
expansion parameters a in (9) and (11) therefore coincide
in this limit. The order-a3�2 terms in these expansions are
identical, because HTL resummation includes the leading
effects associated with Debye screening. Note that HTL
resummation overincludes the order-a correction by a fac-
tor of 3. The remaining order-a corrections would appear
at next-to-leading order in HTL perturbation theory. The
order-a correction in FHTL together with the corrections
that are higher order in a combine to give a total correc-
tion that is negative, in spite of the large positive contri-
bution from the a3�2 term.

In this leading order calculation, T , mg, and m3 all
appear as independent parameters. The parameters mg

and m3 should be chosen as functions of T and as

so as to avoid large higher order corrections in HTL
perturbation theory. At asymptotically large temperatures,
the fractional correction to Fideal from the next-to-leading
order diagrams must reduce to 1�15�2�as�p in order to
agree with FQCD up to corrections of order a2

s . This will
require setting the thermal gluon mass parameter to

m2
g�T � �

4p

3
as�m4�T 2, (12)

with a renormalization scale m4 of order T . A reasonable
choice is m4 � 2pT , the Euclidean energy of the lowest
Matsubara mode. The logarithmic divergences associated
with the three-dimensional renormalization scale m3 will
be cut off by higher order corrections at a scale of
either mg or T . If we choose m3 to be of order mg,
the a2 log�m3�T � term in (9) will reproduce a fraction
of the a2

s logas term in FQCD . A reasonable choice is
m3 �

p
3 mg�T �, which is the Debye screening mass.

In Fig. 1, we compare various approximations to the
free energy of a gluon plasma to the lattice results for
pure-glue QCD from Boyd et al. [4]. The unshaded bands
are the ranges of the perturbative expansions of the QCD
free energy when the renormalization scale is varied by
a factor of 2 from the central value m4 � 2pT . The
four bands correspond to FQCD in (11) truncated af-
ter the as, a3�2

s , a2
s , and a5�2

s terms, respectively. We
use a running coupling constant that runs according to
the two-loop beta function: as�m4� � �4p���11L̄� �1 2

�102�121� log�L̄��L̄�, where L̄ � log�m2
4�L

2
MS�. The pa-

rameter LMS is related to the critical temperature Tc

by Tc � 1.03LMS [4]. The poor convergence properties
of the perturbative expansion and the strong dependence
on the renormalization scale are evident in Fig. 1. The
shaded region in Fig. 1 is the range of the HTL free
energy FHTL when the renormalization scales are var-
ied by a factor of 2 from the central values m4 � 2pT
and m3 �

p
3 mg�T �. For these choices of m3 and m4,

FHTL�T4 is a slowly increasing function of T . This fea-
ture follows from the fact that mg�T � is approximately
linear in T , with deviations from linearity coming only
from the running of the coupling constant. If mg�T � was
exactly linear in T , FHTL�T4 would be independent of
T . With our choices of m3 and m4, the HTL free energy
lies significantly below the lattice results for T . 2Tc.
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FIG. 1. The free energy of a hot gluon gas normalized to
that of an ideal gas of gluons as a function of T�Tc. The
black diamonds are the lattice results for pure-glue QCD
from Ref. [4]. The bands enclosed by the curves labeled 2,
3, 4, and 5 are the QCD free energy FQCD truncated after
the as, a3�2

s , a2
s , and a5�2

s terms, respectively. The bands
correspond to varying m4 by a factor of 2 from the central value
2pT . The shaded region is the HTL free energy FHTL with
m2

g � �4p�3�as�m4�T4. The region corresponds to varying the
renormalization scales by a factor of 2 from the central values
m3 �

p
3 mg and m4 � 2pT .

This should not be of great concern, because the next-
to-leading order correction in HTL perturbation theory
will give a fractional correction to Fideal that approaches
1�15�2�as�m4��p at asymptotic temperatures. It has the
correct sign and roughly the correct magnitude to decrease
the discrepancy with the lattice QCD results at the high-
est values of T . With the inclusion of the next-to-leading
order correction, the error at asymptotic temperatures will
fall as a2

s logas. If the next-to-next-to-leading order cor-
rection was also included, the error would decrease to
order a3

s logas. Because of the magnetic mass problem,
the error can be decreased below order a3

s only by using
nonperturbative methods.

We have proposed HTL perturbation theory as a re-
summation prescription for the large perturbative correc-
tions associated with screening, quasiparticles, and Landau
damping. The free theory around which we are perturbing
is similar to the phenomenological quasiparticle models,
but the effects of interactions between the quasiparticles
can be systematically calculated. This approach can be
applied to the real-time processes that may serve as signa-
tures for the quark-gluon plasma. We have demonstrated
that HTL perturbation theory is tractable by calculating the
leading term in the free energy of a pure gluon plasma.
With reasonable choices of the renormalization scales, the
deviation of the hard-thermal-loop free energy from lat-
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tice QCD results for T . 2Tc has the correct sign and
roughly the correct magnitude to be accounted for by next-
to-leading order corrections. A challenging problem is to
extend the calculation of the free energy to next-to-leading
order in HTL perturbation theory. If the next-to-leading
order correction proves to be small for temperatures within
an order of magnitude of Tc, we may finally have a pertur-
bative framework that will allow quantitative calculations
of the properties of a quark-gluon plasma at experimentally
accessible temperatures.

This work was supported in part by the U.S. Depart-
ment of Energy Division of High Energy Physics (Grant
No. DE-FG02-91-ER40690), by a Faculty Development
Grant from the Physics Department of the Ohio State
University, by the Norwegian Research Council (Project
No. 124282�410), and by the National Science Founda-
tion (Grant No. PHY-9800964).

[1] P. Arnold and C. Zhai, Phys. Rev. D 50, 7603 (1994);
Phys. Rev. D 51, 1906 (1995); B. Kastening and C. Zhai,
Phys. Rev. D 52, 7232 (1995).

[2] E. Braaten and A. Nieto, Phys. Rev. Lett. 76, 1417 (1996);
Phys. Rev. D 53, 3421 (1996).

[3] B. Kastening, Phys. Rev. D 56, 8107 (1997); T. Hatsuda,
Phys. Rev. D 56, 8111 (1997).

[4] G. Boyd et al., Phys. Rev. Lett. 75, 4169 (1995); Nucl.
Phys. B469, 419 (1996).

[5] S. Gottlieb et al., Phys. Rev. D 55, 6852 (1997);
C. Bernard et al., Phys. Rev. D 55, 6861 (1997); J. Engels
et al., Phys. Lett. B 396, 210 (1997).

[6] A. Peshier et al., Phys. Rev. D 54, 2399 (1996); P. Levai
and U. Heinz, Phys. Rev. C 57, 1879 (1998).

[7] K. Kajantie, K. Rummukainen, and M. Shaposhnikov,
Nucl. Phys. B407, 356 (1993); K. Kajantie, M. Laine,
K. Rummukainen, and M. Shaposhnikov, Nucl. Phys.
B458, 90 (1996).

[8] K. Kajantie et al., Phys. Rev. Lett. 79, 3130 (1997).
[9] F. Karsch, A. Patkós, and P. Petreczky, Phys. Lett. B 401,

69 (1997).
[10] I. T. Drummond, R. R. Horgan, P. V. Landshoff, and

A. Rebhan, Phys. Lett. B 398, 326 (1997); Nucl.
Phys. B524, 579 (1998); D. Bödeker, P. V. Landshoff,
O. Nachtmann, and A. Rebhan, Nucl. Phys. B539, 233
(1998); A. Rebhan, hep-ph/9808480; S. Leupold, hep-ph/
9808424.

[11] S. Chiku and T. Hatsuda, Phys. Rev. D 58, 076001 (1998);
hep-ph/9809215.

[12] E. Braaten and R. D. Pisarski, Phys. Rev. Lett. 64, 1338
(1990); Nucl. Phys. B337, 569 (1990).

[13] V. V. Klimov, Sov. Phys. JETP 55, 199 (1982); H. A.
Weldon, Phys. Rev. D 26, 1394 (1982).


