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We study the link between relaxation to the equilibrium and anomalous superdiffusive motion in
a classicalN-body Hamiltonian system with long-range interaction showing a second-order phase
transition in the canonical ensemble. Anomalous diffusion is observed only in a transient out-of-
equilibrium regime and for a small range of energy, below the critical one. Superdiffusion is due
to Lévy walks of single particles and is checked independently through the second moment of the
distribution, power spectra, trapping, and walking time probabilities. Diffusion becomes normal at
equilibrium, after a relaxation time which diverges withN .
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Recently, there has been an increasing interest in ph
cal phenomena which violate the central limit theore
such as anomalous diffusion and Lévy walks. These v
lations are not an exception in Nature and have been
served in many different fields and also in connection w
deterministic chaos in low-dimensional systems [1–5
The availability of more powerful computers has mad
it possible to study deterministic chaos and subdiffusi
motion in systems with many degrees of freedom usi
nearest-neighbor coupled symplectic maps [6]. In a ve
recent paper, superdiffusive motion has been found in
N-body Hamiltonian system with long-range coupling
[7]. The mechanism underlying this anomalous diffusio
is similar to the one proposed by Geiselet al. [1] in “egg-
crate" two-dimensional potentials.

In this Letter we present a novel study of superdiff
sion and Lévy walks in a Hamiltonian system ofN fully
coupled rotors [called Hamiltonian mean field (HMF
[8,9]. The new interesting result is that, in HMF, su
perdiffusion is connected to the presence of quasistati
ary nonequilibrium states, rather than to the mechani
proposed by Geiselet al. [1] and found also in [7].
Hamiltonian mean field has been used to investigate
laxation to thermodynamical equilibrium for systems wit
long-range interactions. It has been studied both a
macroscopic level, by means of the canonical formalis
and at a microscopic dynamical level. The canonical e
semble predicts a second-order phase transition from
clustered phase to a homogeneous one [8,9]. On the o
hand, microcanonical simulations show strong chaotic b
havior in the region below the critical energy; Lyapuno
exponents and Kolmogorov-Sinai entropy reach a ma
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mum at the critical point [9]. These results have bee
confirmed also for long but finite-range interactions [10
Of particular importance for this Letter are the results ob
tained in Ref. [9] concerning the discrepancies betwe
microcanonical results and canonical predictions. In fac
numerical simulations performed at constant energy reve
the existence of out-of-equilibrium quasistationary stat
(QSS) with an extremely slow relaxation to equilibrium
In Ref. [11] these QSS are shown to become stationa
solutions in the continuum limit.

The main results of this letter are the following: (1
We find evidence of an anomalous superdiffusive b
havior below the critical energy. Anomalous diffusion
changes to a normal one after a crossover timetc, as
also found by other authors [1,2,6,7,12,13]. Power spe
tra confirm the presence of the anomaly. (2) The s
perdiffusive behavior is connected to the presence
out-of-equilibrium QSS. We give substantial numerica
evidence that the crossover timetc coincides withtr ,
the time needed for QSS to relax to canonical equilib
rium. (3) We give an interpretation of our results in
terms of Lévy walks, which are originated by chaoti
transport of each rotor, which moves with an energy n
constant in time and alternately sticks to the cluster, a
has a quasiregular motion or undergoes free walks
from it with a constant velocity much greater than tha
of the cluster. Trapping time and walking time probabi
ity distributions show a power law behavior. The corre
sponding exponents can be related to the superdiffus
exponent using the model of Ref. [4] and are very simila
to those found in the fluid flow experiment of Solomon
et al. [2].
© 1999 The American Physical Society
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In the following we recall the formalism and then
we review the numerical results. The HMF describes a
system of N classical particles (or rotors) characterized by
the angles ui and the conjugate momenta pi . Each rotor
interacts with all of the others according to the following
Hamiltonian:

H�u, p� � K 1 V , (1)

where

K �
NX

i�1

p2
i

2
, V �

1
2N

NX

i,j�1

�1 2 cos�ui 2 uj�� (2)

are the kinetic and the potential energies. One can
define a spin vector associated with each rotor mi �
�cos�ui�, sin�ui�� and a total magnetization M �
1
N

PN
i�1 mi . The Hamiltonian then describes N clas-

sical spins similar to the XY model. This system has
a ferromagnetic second-order phase transition from a
clustered phase to a homogeneous one at a critical
temperature Tc � 0.5 and a corresponding critical energy
Uc � Ec�N � 0.75 (see Refs. [8,9]). The equations of
motion for the N rotors are given by

�ri � pi , �pi � 2M sin�ui 2 f� ,

i � 1, . . . , N ,
(3)

where �M, f� are, respectively, the modulus and the phase
of the total magnetization vector M. These equations are
formally equivalent to those of a perturbed pendulum. To
study relaxation to canonical equilibrium, we solve these
equations on the computer using fourth-order symplectic
algorithms (the details can be found in Ref. [9]). We
start the system in a given initial distribution and we
compute ui , pi at each time step, and from them the total
magnetization M and temperature T (through the relation
T � 2�K��N). We consider systems with an increasing
size N and different energies U � E�N .

Diffusion and transport of a particle in a medium or
in a fluid flow are characterized by the average square
displacement s2�t� in the long-time limit. In general,
one has

s2�t� � ta (4)

with a � 1 for normal diffusion. All processes with a fi

1 are termed anomalous diffusion, namely, subdiffusion
for 0 , a , 1 and superdiffusion for 1 , a , 2.

In order to study anomalous diffusion in HMF we
follow the dynamics of N rotors starting the system in
a “water bag,” i.e., a far-off-equilibrium initial condition
obtained by putting all of the rotors at ui � 0 and giving
them a uniform distribution of momenta with a finite
width centered around zero. We compute the variance
of the one-particle angle u according to the expression

s2
u�t� � ��u 2 �u��2� , (5)

where �· · ·� indicate the average over the N particles, and
we fit the value of the exponent a in Eq. (4). In Fig. 1
we plot on a log-log scale s

2
u vs t for N � 500 at three
FIG. 1. For N � 500 we show three different behaviors:
(1) no diffusion for U � 0.2; (2) ballistic diffusion for U � 5;
and (3) superdiffusion for U � 0.6. In this last case we
considered the average over 5 events. The straight full lines
are shifted fits, and the relative slopes are also indicated. The
relative errors obtained from the fits are �5%. We show in
the inset the numerical evaluation of the slope a vs time for
the case U � 0.6.

different energies: U � 0.2, U � 0.6, and U � 5. The
continuous lines are shifted fits and show a very clear
power law over a few decades; the corresponding values
for the slope a are indicated in the inset. The numerical
results show clearly three different types of behavior:
(1) No diffusion for very low energy, i.e., U # 0.2. In
this case all of the particles belong to a single cluster
and a � 0. (2) A ballistic regime a � 2 for U bigger
than the critical energy �Uc � 0.75� (a short-time ballistic
regime is obviously always present for all energies).
(3) Superdiffusion with a � 1.38 6 0.05 for U � 0.6,
in the transient regime. After a crossover time tc � 7 3

104, a change to the slope a � 1 (normal diffusion) is
observed. The superdiffusive regime is present in the
energy range 0.5 , U , 0.75.

In Fig. 2 we study the dependence on N of the anoma-
lous diffusion and the coincidence of crossover time tc

with the relaxation time tr , i.e., the time the system needs
to reach the canonical temperature [horizontal dotted line
in panel (b)]. We report s

2
u and temperature vs time

for N � 500 and 2000 and U � 0.69. A slope a �
1.42 6 0.05 is observed in a first time stage, in which
the temperature is different from the canonical value. In
fact, the temperature maintains for a very long period a
constant value which corresponds to a QSS belonging to
the continuation of the homogeneous phase at a subcritical
energy (see, in particular, Fig. 1 of Ref. [9], and see also
Ref. [11]). Indeed, the crossover time from anomalous
to normal diffusion tc coincides with the relaxation time
tr . This result has also been checked, changing the ac-
curacy of the numerical simulation. The transient regime,
in which QSS and anomalous diffusion are present, in-
creases linearly with N [9]; consequently, for N � 2000,
2105
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FIG. 2. Variance and temperature for two different sizes N �
500 (dashed lines) and 2000 (solid lines) at U � 0.69. Panel
(a) shows that a � 1.4 does not depend on N (within the
accuracy of the calculations) and occurs only in a transient
regime. Once the canonical temperature, shown in panel (b), is
reached, diffusion becomes normal. The relaxation time tr is
clearly larger for bigger N . The vertical dashed lines indicate
tc � tr for N � 500 and N � 2000.

one gets superdiffusion over almost three decades. On
the other hand, the slope a does not seem to strongly de-
pend on N , and, moreover, in the range 0.6 , U , 0.69
it varies from 1.38 to 1.42. A similar scenario has been
recently conjectured by Tsallis [14] for systems with long-
term memory and slow relaxation to equilibrium, but to
our knowledge this is the first time that it has been found
in a numerical simulation.

The importance of noise and finite-size fluctuations
in the crossover from anomalous to normal diffusion
has been studied in detail in Refs. [12,13,7]. However,
Kaneko and Konishi [6] claim that relaxation to normal
diffusion is due to phase-space uniform sampling, which
occurs asymptotically. Our results show that this relax-
ation occurs in coincidence with relaxation to the equilib-
rium of QSS, which is a quite close mechanism to the one
proposed in Ref. [6]. However, at variance with these lat-
ter authors, our model displays superdiffusion, rather than
subdiffusion, in the transient. Some important physical
facts might be crucial in the observed differences. Su-
perdiffusion occurs near a second-order phase transition
in our case, while in the model of Ref. [6] no phase tran-
sition is present. The model of Ref. [7] has a first-order
phase transition, and the particles performing correlated
flights belong only to a distinct dynamical class or phase
for N ! `. In our case this is not true: Close to the criti-
cal energy, fluctuations are maximal and do not disappear
in the thermodynamical limit. Each particle regularly per-
forms free walks and trapped oscillations until it forgets
the initial condition and tends to a Brownian motion.

Evidence in favor of this mechanism is provided by
the link of superdiffusion with Lévy walks. For low-
dimensional chaotic Hamiltonian systems, superdiffusion
2106
has been interpreted as being due to the trapping of the
particles by the cantori of the phase space; particles can
eventually escape and walk freely before a new trapping
occurs [5], and this mechanism prevents normal diffusion.
An analogous situation occurs in the experiment of
Solomon et al. for chaotic transport in a two-dimensional
rotating flow [2]. In this case tracer particles are trapped
and untrapped by a chain of six vortices. This last
mechanism is very similar to ours. In Fig. 3 we report
the time behavior of the angle u and of the corresponding
conjugate momentum p of a test particle in the transient
anomalous diffusion regime [panels (a) and (b)] and in the
equilibrium regime [panels (c) and (d)] for U � 0.6 and
N � 500. Free walks and trapped motion are observed
in the transient regime; the walks have an almost constant
velocity corresponding to the separatrix between bounded
and free motion ��2

p
M � of the perturbed pendulum

of Eqs. (3). In the equilibrium regime the test particle
remains trapped in the cluster; it oscillates around its
center and drifts together with it on a much longer time
scale (for a study of cluster motion, see Ref. [8]). It is
important to notice that the energy of the test particle
is not conserved. The particle walks freely when it
accidentally receives enough energy that allows it to
escape from the mean field. In this sense the mechanism
of anomalous diffusion in our case is similar to that
of nonconservative systems. A quantitative difference
between the two behaviors can be obtained by performing
the power spectrum of the motion in Figs. 3(a) and 3(c).
We get a power law with slope 22 for the equilibrium
regime, as it should be for Brownian motion, and a slope
smaller than 22 for the transient regime. To study the
connection between Lévy walks and anomalous diffusion
we evaluate trapping and walking time distributions.
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FIG. 3. Angle u and momentum p of a typical particle for
U � 0.6 and N � 500. Panels (a) and (b) refer to the transient
regime, and (c) and (d) refer to the canonical equilibrium state.
See text for more details.
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FIG. 4. For the cases U � 0.6 and U � 0.69, we show the
probability distribution functions for trapping (open diamonds)
and walking times (open circles) calculated in the transient
regime �2000 , t , 8000�. The corresponding fits and expo-
nents are also indicated; see text for more details.

A free walk is identified by Du . 2p . In Fig. 4 we
consider, for N � 500 and two energies U � 0.6 and
U � 0.69, the probability distribution of “walking times”
and “ trapping times.” They show, as expected, a clear
power law decay:

Pwalk � t2m, Ptrap � t2n . (6)

The values of m and n obtained from the fitting are
reported in the figure. Their value is crucial because the
two exponents m and n can be related to the anomalous
diffusion coefficient a. The following relationships,
derived from Ref. [4], are the most appropriate for HMF:

a � 2 1 n 2 m , 2 , m , 3 , n , 2 , (7)

a � 4 2 m , 2 , m , 3 , n . 2 . (8)

These formulas are valid for a one-dimensional system
under the assumption of walks with a constant velocity,
separated by sticking events with no motion. In the
case shown we get for U � 0.69 �0.6�, m � 2.14 6 0.1
�1.98 6 0.1�, n � 1.58 6 0.05 �1.34 6 0.05�, and thus
a value for a � 2 1 n 2 m � 1.44 6 0.05 �1.36 6

0.05�, which is consistent with the values obtained from
the fits shown in Figs. 1 and 2, within our numerical
accuracy (the relative error on the exponent a obtained
by fitting the slope of the variance is �5%). As found in
Ref. [2] we get for the trapping probabilities the exponent
n , 2, which is not the usual case encountered in low-
dimensional conservative maps. The reason for that is
likely the nonconservation of energy for the test particle
motion.

In conclusion, we have found superdiffusion and Lévy
walks in a Hamiltonian system showing a second-order
phase transition. This behavior occurs in a transient
out-of-equilibrium regime in a range of energies slightly
smaller than the critical energy where the system is
strongly chaotic and QSS exist. We have also found
that the equilibration time needed to reach the canonical
temperature, which diverges with N , corresponds to the
crossover to normal diffusion, confirming a recently pro-
posed scenario [14]. This feature has been observed for
the first time in a deterministic chaotic system with many
degrees of freedom and could be relevant to understanding
more realistic situations such as the anomalous diffusion
observed in fluid flow experiments [2].
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