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Quasicondensate Droplet Formation in a Gas of Trapped Atomic Hydrogen
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The formation of quasicondensate droplets in ultracold atomic gases is investigated as a firs
order phase transition. Physical parameters and size distribution of metastable condensate dropl
are derived from conditions of local equilibrium between quasicondensate and normal gas phase
Droplet characteristics are used for the quantitative description of recent measurements of enormo
frequency shifts in the1S-2S two-photon absorption in spin-polarized hydrogen in the normal gas phase.
Theoretical evaluation of the line shape is in good agreement with experimental data.
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The experimental realization of Bose-Einstein conden
sation (BEC) in dilute alkali-metal atoms [1] and more
recently in atomic hydrogen [2] has stimulated theoret
cal studies of the growth and time evolution of conden
sates [3]. The kinetics of the condensate formation from
strongly nonequilibrium initial state to a final macroscopi
coherent state has been explored in many contexts [
and particularly in dilute atomic gases [5,6]. Recently
effects of quasicondensates on the three-body recombi
tion rate in a two-dimensional gas of atomic hydroge
have been observed [7]. The1S-2S two-photon absorp-
tion line shapes measured at MIT [2] show significant dis
tortions of the Doppler-free spectrum of the normal ga
which cannot be explained by the influence of the sma
fraction of atoms in the condensate. We argue that t
origin of these distortions is the formation of metastabl
quasicondensate droplets.

In this paper, we develop a theoretical model based
a first-order phase transition treatment for the formation
metastable condensate droplets, and evaluate the effec
the 1S-2S line shape. We consider a weakly interactin
trapped bosonic gas near the critical conditions for BEC
In the MIT experiment [2,8], a pronounced asymmetry i
the Doppler-free spectrum of the normal gas was observe
This asymmetry appears at laser detunings correspond
to frequency shifts much larger than expected from th
maximum densityn0 in the normal gas, and contains
20%–30% of the trapped atoms [9]. It implies that som
fraction, much larger than the 5% of the atoms in the ma
condensate [2], is effectively in regions of higher densit
thann0, and points to nonequilibrium density fluctuations

The formation of metastable condensates as a first s
in atomic BEC has been discussed in several theoretic
models [3,5,6]. Direct experimental observations of th
quasicondensate formation have not yet been report
We show that the pronounced asymmetry in the norm
gas Doppler-free spectrum [2] can be considered as
strong experimental evidence of quasicondensate drop
formation. We propose a model for the nucleatio
of metastable quasicondensate droplets where a drop
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coherent many-body wave function covers only a sma
fraction of the whole volume.

The model takes into account nonequilibrium cond
tions that exist in the trapped gas during the measureme
[10]. In the last stage of evaporative cooling, the gas is
the degenerate regime and up to 100 collisions are need
to thermalize [11]: about 10 s in [2]. During that time,
the metastable gas can be described by a Boltzmann-l
distribution [11], with a positive chemical potential [12]
whose fluctuations provide the nucleation conditions fo
the quasicondensate droplets [13]. The lower states
the Bose-Einstein distribution are difficult to fill, and the
distribution shows a Maxwell-Boltzmann character befor
equilibrium is reached [11].

We consider a spherical quasicondensate droplet loca
formed by density fluctuations within the metastable ga
The droplet radiusRd is determined by the local mechani-
cal equilibrium conditions: the pressure induced by th
quasicondensate droplet equals the external pressure
the surrounding normal gas [14]. For the metastable ba
gas with effective temperatureT , the pressure is

Pg � ngkBT 1
2pah̄2

m
n2

g , (1)

whereng � ng��r� is the local normal gas density,a is the
scattering length, andm is the atom mass. We estimate
the quantal pressure in the droplets using a solvable mo
for the dependence of the droplet energyEd on the droplet
radiusRd . Assuming, for simplification, that the coheren
wave function of the quasicondensate is localized insid
a spherical region [15] and that the quasicondensa
containing Ñ atoms is in its ground state with entropy
Sd � 0, we get

Ed � Ñ
h̄2p2

2mR2
d

1
4pah̄2

mVd

Ñ�Ñ 2 1�
2

h , (2)

whereVd � 4pR3
d�3 andh � 2.815 is the correction for

the finite size of the droplet. For̃N ¿ 1, we get the
droplet quantal pressure fromP � 2�≠E�≠V �Ñ ,S ,
© 1999 The American Physical Society
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Pd �
h̄2p

4m
Ñ

R5
d

1
9h

8
h̄2a
pm

Ñ2

R6
d

. (3)

Equating Pg and Pd , we obtain Rd as a function of T , Ñ ,
a, and ng. For hydrogen gas, a � 1.2a0 and the second
term in Pg is much smaller than ngkBT , and for Ñ not
too large, we can consider the interparticle interactions as
a small perturbation. Set Rd � R0 1 d, where R0 is the
droplet radius with a � 0, and d is the correction due to
interactions. Then

R0 �

µ
h̄2pÑ

4mngkBT

∂1�5

� l

µ
Ñ

8jg

∂1�5

, (4)

and d � �9ah�10p2�Ñ , with the thermal de Broglie
wavelength defined as l �

p
2p h̄2�mkBT and jg �

ngl3 is a dimensionless parameter. In [2], T � 50 mK,
and ng � 1014 cm23, so the condition d�R0 ø 1 is
satisfied for Ñ ø 9 3 104. From Rd , we obtain the
density of the coherent phase inside a droplet

nd � n0
d

µ
1 2

3d

R0

∂
with n0

d �
3ng

p

µ
Ñ

p
2 jg

∂2�5

, (5)

where n0
d is the droplet density for an ideal gas [16].

For large Ñ , the droplet density is much larger than the
surrounding normal gas density.

To determine the most probable number of atoms in a
droplet, Ñd , we follow a first-order phase transition treat-
ment based on an activation energy similar to the phase
nucleation of small droplets or bubbles in a metastable
vapor-liquid system [17]. Small droplets �Ñ , Ñd� have
large quantal energy and are dissolved back into the
normal gas phase. We define an activation energy A
as the difference between the free energies of the final
and initial systems. For the initial system made of N
atoms in the normal gas phase, the free energy is sim-
ply Finitial � Fg�N�. In the final system, the appearance
of one droplet containing Ñ atoms gives a free energy
Ffinal � Fg�N 2 Ñ� 1 Fd�Ñ�. Assuming that the num-
ber of atoms Ñ converted from the gas state to the coher-
ent state is small, Ñ ø N , we expand Fg�N 2 Ñ� and
use the definition of the chemical potential for the normal
gas to obtain

A � Fd�Ñ� 2 Ñmg 1 O �Ñ�N� . (6)

For a weakly interacting bosonic gas, the chemical poten-
tial of the initial metastable gas phase is [18]

mg � kBT lnjg 1
4pah̄2

m
ng , (7)

and the quasicondensate droplet free energy Fd � Ed 2

TSd is simply given by Ed (since Sd � 0). Thus

Fd � Ñ
h̄2p2

2mR2
d

1
2pah̄2h

m
3Ñ2

4pR3
d

. (8)

The activation energy A becomes (with d�R0 ø 1)
A � A0 1
2pah̄2

m

∑
2
5

n0
dh 2 2ng

∏
Ñ , (9)

with the noninteracting contribution A0 given by

A0 � Ñ
h̄2p2

2mR2
0

2 ÑkBT lnjg , (10)

where R0 and n0
d are both functions of Ñ . In Fig. 1,

A and A0 are shown as a function of Ñ for various
conditions. The effect of a is to reduce the probability of
the formation of large size nascent droplets. The position
Ñd of the maximum value of A is also illustrated in
Fig. 1. For Ñ , Ñd , the droplet will minimize its free
energy by lowering Ñ until it disappears; such droplets
are unstable and will vaporize back into the normal gas
phase. Droplets with Ñ . Ñd will decrease their free
energy by growing: they are stable [17]. The maximum
of A gives a threshold value Ath which determines if a
droplet is stable or not. This model is well behaved for
jg . 1: near the critical conditions for BEC for an ideal
infinite homogeneous bosonic gas, jg � 2.612.

Setting dA�dÑ � 0, we obtain Ñd . In what fol-
lows, we consider the case of an ideal gas [19]. From
dA0�dÑ � 0, we get Ñ0

d and the corresponding A0
th

Ñ0
d �

µ
3p

5

∂5�2 jg

4
�lnjg�25�2, (11)

A0
th

kBT
�

µ
3p

5

∂5�2 jg

6
�lnjg�23�2. (12)

The formation time tf of a droplet containing Ñ atoms
can be estimated via tf � tgÑ1�2 [5,20], where t21

g �
4p h̄ang�m. In [2], ng � 1014 cm23, so tg � 200 ms.
Although density fluctuations in the normal gas may
create droplets of any size, the smallest stable droplets
containing Ñ0

d atoms are formed faster than the larger
ones. The probability of having a nascent droplet with
Ñ0

d is given by P�Ñ0
d� ~ exp�2A0

th�kBT �, and its density
n0

d by n0
d � 9ng�10 lnjg. For atomic hydrogen gas at

FIG. 1. Plot of A as a function of Ñ with and without
interactions. The quantities Ath and Ñd regulate the stability
of the droplets (see text). As shown in the inset, the activation
energy is increased and the probability of droplet formation is
reduced when the effect of repulsive interactions is considered.
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T � 50 mK, there is no droplet phase for ng , 6.7 3

1013 cm23, which corresponds to jg , 1.
Let us examine the effect of the droplet formation

on the 1S-2S two-photon absorption line shape. The
line profile is assumed to be due essentially to the lo-
cal density shift D � an��r�, where a � 23.8 6 0.8 3

10210 Hz cm3 [8]. The line intensity at a given value
of the laser detuning v is proportional to the number of
atoms absorbing the two photons with a frequency shift
D � 2v � and . The total number of atoms contained
within droplets of density nd is Ñd times the total number
of droplets, assumed to be proportional to the probability
exp�2Ath�kBT � of being formed. The droplet contribu-
tion to the line profile is therefore

Id�ng� � I0
dÑd�ng� exp

µ
2

Ath�ng�
kBT

∂
, (13)

where I0
d is a normalization constant. Since the gas

density ng varies within the trap, the line profile as a
function of v � D�2 is

Id�v� �
Z n0

nmin

dng p�ng�Id�ng�d�2v 2 and�ng�� , (14)

where nmin � l23 corresponds to jg � 1. Here, p�ng� is
the probability of having a local density of ng in the line
of sight of the laser beams, and it is given by

p�ng� �
1

Ng

Z
d3r n��r�PL��r�d�ng 2 n��r�� , (15)

where Ng is the total number of atoms in the normal
gas phase, and PL��r� is the laser intensity profile which
depends on the geometry. For two-photon absorption
of counterpropagating laser beams, PL��r� � I2

L��r��I2
0 ,

with axial symmetry [2,8] such that IL��r� � IL�r� �
I0 exp�2r2�2s

2
L�, where sL is the laser intensity half-

width and I0 its intensity. For the normal gas density, we
consider n��r� to be Gaussian with axial symmetry [21]

n��r� � n�r, z� � n0 exp

∑
2

m
2kBT

�v2
rr2 1 v2

z z2�
∏

,

(16)

with the maximum density n0 given by n0 �
Ng�m�2pkBT �3�2v2

rvz . The probability p�ng� be-
comes

p�ng� �
2

p
p

1
n0

µ
ng

n0

∂n
s

ln

µ
n0

ng

∂
, (17)

where ng , n0, and n � 1�3 for the MIT experiment
[22]. In Fig. 2, we illustrate Id�ng��I0

d as well as p�ng�
and p�ng�Id�ng��I0

d for an ideal gas.
Similarly, the normal gas line profile is given by [23]

Ig�v� � I0
g

Z n0

0
dng p�ng�d�2v 2 ang� , (18)

�
I0
g

jaj

µ
2v

a

∂n 2
p

p

1
n0

s
ln

µ
an0

2v

∂
. (19)
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FIG. 2. Plot of (a) Id�ng��I0
d , (b) p�ng�, and (c)

p�ng�Id�ng��I0
d as a function of ng for an ideal gas �a � 0�

with n0 � 1.8 3 1014 cm23 and T � 50 mK: p�ng� cuts
the long tail of Id�ng��I0

d . (d) shows the same as (c) but
as a function of the laser detuning v. In (b)–(d) we give
the curves for two values of n corresponding to the actual
experiment geometry �n � 1�3� and the case of a uniform
laser intensity �n � 0�.

The frequency v is limited to values between 0 and
an0�2. In Fig. 3, we show the contribution of the
normal gas and quasicondensate droplet phases to the line
profile of an ideal gas corresponding to the experimental
conditions [2]. The normal line alone cannot reproduce

FIG. 3. Plot of Id�v� and Ig�v� as a function of the laser
detuning v for an ideal gas with the experimental geometry.
The normal and droplet lines have been convoluted with a
Gaussian of 3 kHz width (corresponding to the experimental
frequency step). The sum of those two lines is compared to
the experimental signal obtained in [2]. The inset shows the
normal line with (thick dashed line) and without (thin dashed
line) convolution, and the droplet line with (thick solid line)
and without (thin solid line) convolution. From the intensity of
the droplet line, we determine that the droplets contain 20% of
all atoms and that a � 24.5 3 10210 Hz cm3.
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the experimental curve: the droplet line contribution gives
rise to a long tail at large detunings as well as a
shoulder. The large asymmetry measured in the Doppler-
free normal gas line shape is well reproduced by the
model, and the experiment [2] provides a strong evidence
of quasicondensate formation.

Because the data were taken over a period of a second
[9], growth and decay of the metastable droplets may play
an important role in explaining the large spread of the
measured line. However, since the time evolution of the
droplet line is slow (it can be observed for many seconds
[9]), the static model presented here should be broadly
applicable. A more thorough study, including the role of
interactions, and the time evolution of the droplets, should
help in the design of experiments to determine the detailed
properties of the droplets.
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Rev. B 56, 5306 (1997).

[5] Yu. M. Kagan, B. V. Svistunov, and G. V. Shlyapnikov,
Sov. Phys. JETP 74, 279 (1992); 75, 387 (1992); Yu.
Kagan and B. V. Svistunov, Sov. Phys. JETP 78, 187
(1994); Phys. Rev. Lett. 79, 3331 (1997); Yu. Kagan, in
Bose-Einstein Condensation, edited by A. Griffin, D. W.
Snoke, and S. Stringari (Cambridge University Press,
Cambridge, 1995), p. 202.

[6] C. W. Gardiner et al., Phys. Rev. Lett. 79, 1793 (1997);
C. W. Gardiner et al., Phys. Rev. Lett. 81, 5266 (1998).
[7] A. I. Safonov et al., Phys. Rev. Lett. 81, 4545 (1998).
[8] T. C. Killian et al., Phys. Rev. Lett. 81, 3807 (1998).
[9] D. Kleppner et al. (private communication).

[10] It takes over 1 s to obtain the Doppler-free normal line
spectrum, and the central condensate can be detected for
about 5 s [9].

[11] D. W. Snoke and J. P. Wolfe, Phys. Rev. B 39, 4030
(1989); O. J. Luiten, M. W. Reynolds, and J. T. M.
Walraven, Phys. Rev. A 53, 381 (1996); M. Holland,
J. Williams, and J. Cooper, Phys. Rev. A 55, 3670 (1997).

[12] Other studies [6] also use a system with depleted lower
states and a positive chemical potential.

[13] Spatial density fluctuations of the metastable gas create
fluctuations of the value of the positive chemical potential,
which can be seen as an internal random potential for
the single particle atomic wave function in the nonlinear
equation.

[14] The nascent coherent phase, while attempting to spread
throughout the trap, will interact with the surrounding
thermal atoms, and its wave function final size will be
attained as local equilibrium is reached.

[15] The surrounding normal gas restricts the coherent wave
function spatial extension. If the infinite wall constraint
is relaxed, the quasicondensate wave function penetrates
the walls, and pressure and droplet density decrease.

[16] When Rd � l, the extension of the quasicondensate wave
function leads to a numerical factor b in the first term
in Eq. (2), together with a different value of h. For a
realistic box where the vertical wall is replaced with a
Gaussian of width l, we obtain b � 0.8 and h � 1.5,
which do not greatly affect our results.

[17] E. M. Lifshitz and L. P. Pitaevskii, in Physical Kinetics,
edited by L. D. Landau and E. M. Lifshitz, Course of
Theoretical Physics Vol. 10 (Pergamon Press, New York,
1981).

[18] The expression for mg is valid even for nonequilibrium
systems: see L. D. Landau and E. M. Lifshitz, Statistical
Physics (Pergamon Press, New York, 1980).

[19] The a fi 0 case needs to be solved numerically.
[20] The formation time can be estimated from local density

fluctuations. See also [5].
[21] We adopt the Gaussian density profile describing the sys-

tem before it reaches BEC conditions: because thermal-
ization is slow, we assume that the density profile remains
constant during the measurement of the spectrum.

[22] This functional dependence is valid for sL larger than
the equivalent width of the normal gas distribution. For
T � 50 mK, n0 � 1.8 3 1014 cm23, and sL � 50 mm,
n � 1�3: this value varies with T , n0, and sL. If the
laser intensity is spatially constant (or sL ! `), n � 0.

[23] This expression is derived from a quasistatic treatment of
the line shift. See also N. Allard and J. Kielkopf, Rev.
Mod. Phys. 54, 1103 (1982).
2103


