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We investigate the efficacy with which polarization entanglement can be teleported using a continuous
measurement scheme. We show that by using the correct gain for the classical channel the degree of
violation of locality that can be demonstrated (using a CH-type inequality) is not a function of the
level of entanglement squeezing used in the teleportation. This is possible because a gain condition
can always be chosen such that passage through the teleporter is equivalent to pure attenuation of the
input field.

PACS numbers: 03.67.–a, 03.65.Bz, 42.50.Dv
It is remarkable that nonlocal entanglement can be
established between particles that have never interacted
directly. Here “nonlocal” refers to the inability of local
hidden variable theories to predict the observed correla-
tions. This “entanglement swapping” [1,2] may be useful
in establishing nonlocal correlations over very large dis-
tances and other applications [3]. Recently Pan et al. [4]
have demonstrated entanglement swapping of the po-
larization entanglement created by type-II parametric
down-conversion experimentally. In all discussions and
experiments to date discrete measurements and manipu-
lations are made in order to transfer the nonlocal corre-
lations. For example, in the optical experiments, photon
coincidences operate photocurrent gates. However, en-
tanglement swapping is really a special case of teleporta-
tion [2] and in work by Vaidman [5] and Braunstein and
Kimble [6], schemes for the teleportation of continu-
ous quantum variables have been proposed. In these
schemes continuous measurements and manipulations are
used. A preliminary experimental demonstration of con-
tinuous variable teleportation of a coherent state has
recently been presented by Furusawa et al. [7]. An
important question to ask is: Can nonlocal entanglement
be swapped or teleported using a continuous measurement
scheme?

In this paper we show explicitly that this can be
achieved. This effect represents a completely new way of
transferring nonlocal correlations. Of particular practical
0031-9007�99�83(11)�2095(5)$15.00
significance is that the conditions for achieving nonlocal
effects are not stringent.

The optical arrangement we will investigate is shown in
Fig. 1. It combines the basic arrangement of entanglement
swapping [4] with a two-mode generalization of the con-
tinuous variable teleportation scheme [6]. We consider a
noncollinear type-II optical parametric oscillator operating
at low pump efficiency (OPO1) as our source of entangled
photons [8]. In the Heisenberg picture the two outputs,
A and B, can be decomposed into their horizontal (h) and
vertical (y) linear polarization components by

A � A�h�ĥ 1 A�y�ŷ ,

B � B�h�ĥ 1 B�y�ŷ ,
(1)

where ĥ and ŷ are orthogonal unit vectors,

A�h,y� � A0�h,y� coshx1 1 B
y
0�y,h� sinhx1 ,

B�h,y� � B0�h,y� coshx1 1 A
y
0�y,h� sinhx1 ,

(2)

A0 and B0 are the vacuum inputs to OPO1, and x1 is its
conversion efficiency. We have assumed the bandwidth of
the OPO is broad compared to our detection bandwidth and
that pump depletion can be ignored. The output state of
the combined system in the number state basis is given by

1
p

2 cosh�x1�

X̀
n�0

�tanhx1�n�jnh, ny� 1 jny , nh�� , (3)
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FIG. 1. Schematic of the teleportation arrangement. OPO1 produces pairs of photons with entangled polarizations in beams A and
B. The polarization modes of beam B are separated, and teleported separately into beam D. The squeezed resource is provided
by OPO2. The polarization modes are swapped during teleportation, so a half-wave plate is inserted to swap them back. Finally,
coincidence measurements are taken on modes A and D0 to test for violation of the Clauser-Horne inequality.
where

jni , nj� � jni�A ≠ jnj�B (4)

and nh and ny are the photon number in the horizontal and
vertical polarizations, respectively.

This reduces to the number-polarization entangled state

x1p
2

�j1h, 1y� 1 j1y , 1h�� 1 j0� (5)

for low pump efficiency (i.e., x1 ø 1). The state given
by Eq. (5) violates the Clauser-Horne (CH)-type inequal-
ity [9]

S �
R�uA, uB�2R�uA, u

0
B�1R�u0

A, uB�1R�u0
A, u

0
B�

R�u0
A, 2B� 1 R�2A, uB�

# 1 ,

(6)

where R�uA, uB� is the photon coincidence count rate
between polarization uA of beam A and uB of B, and
R�uA, 2B� is the equivalent rate counting both polariza-
tions of beam B. The maximum violation occurs for uA �
p�8, uB � 2p�4, u

0
A � 3p�8, and u

0
B � 0, when S �

1.21. Strong violations of locality have been observed ex-
perimentally with such a state [8].

Now we consider teleporting, or swapping the entangle-
ment of, one of the beams (B) from our nonlocal source
using a continuous variable method. We will then inves-
tigate the correlations between the teleported beam and
beam A and determine under what circumstances they still
violate the CH inequality. The teleportation is achieved
using a second type-II OPO (OPO2). The output beams
of OPO2, C and D, are given by analogous expressions to
those of OPO1 [Eqs. (1) and (2)]. The conversion effi-
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ciency of OPO2 is x2. Beam B is split into its two polar-
ization components (Bh and By) at a polarizing beam
splitter (see Fig. 1). Similarly beam C is split into Ch and
Cy . The horizontally polarized component of OPO1 (Bh)
is mixed with the horizontally polarized component from
OPO2, Ch, on a 50:50 beam splitter. The outputs of the
beam splitter are directed to two homodyne detection sys-
tems which measure the phase (X2) and amplitude (X1)
quadratures of the field. Similarly By and Cy are mixed
and their quadrature amplitudes detected. The resulting
photocurrents are proportional to

X6
�h,y� �

p
1 2 h X6

d�h,y� 1

q
h�2

3 �X6
B�h,y� 6 X6

C0�h,y� coshx2 1 X6
D0�y,h� sinhx2� ,

(7)

where, for example, X2
B � i�B 2 By� and X1

B � B 1 By.
The operators X6

d�h,y� come from vacuum modes intro-
duced by losses in the homodyne systems, which are as-
sumed to have efficiencies h. The photocurrents are then
amplified and fed forward to the interferometric modula-
tion systems (IMS) depicted in Fig. 2 which act on the
individual polarization components of the second beam
from OPO2, Dh and Dy . The photocurrents from the de-
tection of the horizontally polarized beams are used to
modulate Dy while the photocurrents from the detection
of the vertically polarized beams are used to modulate Dh.
The effect of the IMS’s are to displace the amplitudes of the
beams by coupling in power from local oscillator beams
(LO). The coupling is achieved via electro-optic modula-
tors (EOM) in the interferometer arms. Provided the phase
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FIG. 2. Schematic of the interferometric modulation system.
The input beam is combined at a beam splitter with a coher-
ently related local oscillator. The signal from the homodyne
detectors is used to modulate the phases of each of the result-
ing beams, with a p phase shift between them. The beams
are then recombined. In the absence of modulation the input
emerges unchanged from the output port. The phase modula-
tion couples some of the intensity of the local oscillator into the
output beam; in effect the signal is added to the amplitude of
the beam.

shifts (fy,h) introduced by the EOM’s are small, the out-
put of the IMS’s (D0

h and D0
y) are given by

D0
�h,y� � D�h,y� 1 Ēfy,h , (8)

where Ē is the coherent amplitude of the LO. In general
we have

fy,h�t� �
Z t

0
k1�u�X1

y,h�t 2 u� du

1
Z t

0
k2�u�X2

y,h�t 2 u� du , (9)

where k6 contains various constants of proportionality as
well as the time response of the feedforward electronics.
However, if we restrict our attention to RF frequencies
(relative to the local oscillator) for which the frequency
response of the electronics is flat, we can set

k6�u� �
1

p
2 Ē

l6d�u� , (10)

where l6 is the feedforward gain, and so

D0
�h,y� � D�h,y� 1

1
p

2
l1X1

y,h 1
1
p

2
l2X2

y,h . (11)

Finally the beams are recombined using a polarizing beam
splitter and a half-wave plate is used to rotate horizontal
polarizations into vertical and vice versa. The output
beam is

D0 � D0
�y�ĥ 1 D0

�h�ŷ . (12)

Setting (l � 2l1 � il2) and assuming unit detection
efficiency (h � 1) we obtain
D0 � �l�h� 1 �sinhx2 2 l coshx2�Cy
0h 1 �coshx2 2 l sinhx2�D0y�ĥ

1 �l�y� 1 �sinhx2 2 l coshx2�Cy
0y 1 �coshx2 2 l sinhx2�D0h�ŷ . (13)
In the limit of strong squeezing (x2 ¿ 1 such that
coshx2 � sinhx2) and unity gain (l � 1) beams B
and D0 become equivalent. It is clear that in this limit
the beams A and D0 will violate the CH inequality for
conditions under which A and B violated it, showing that
the nonlocality has been teleported. This is shown in
Fig. 3 where Eq. (6) is evaluated as a function of polarizer
angle with beams A and D0 as inputs, unity gain, and 99%
squeezing.

Very high levels of squeezing are difficult to achieve
so it is important to ascertain what levels of squeezing
are required to achieve nonlocal teleportation. Indeed, if
we remain at unity gain, the operating point discussed
in Ref. [6] and used by Furusawa et al. [7], Fig. 3 also
shows that nonlocality is lost for squeezing less than
about 80%. Surprisingly, though, we are able to recover
nonlocal behavior for low levels of squeezing if we reduce
the gain in the feedforward loops. This represents a new
and potentially useful operating point.

We can write an analytical relationship between the
value of S that could be obtained from photon correlation
measurements of beams A and B, SA,B and that which could
be obtained for the same measurements of beams A and D0,
SA,D0 in the limit that x1 ø 1. We must calculate photon
coincidence count rates between beams A and D0 such as

FIG. 3. The variation of SA,D0 with the polarizer angle (uA) at
unity gain. The other polarizers are also varied such that the
condition uA � 2uD0�2 � u

0
A�3 is maintained while u

0
D0 � 0.

This arrangement maximizes S. The CH inequality is violated
for S . 1. The two traces are for 99% and 80% squeezing at
OPO2. x1 � 0.1
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R�uA, uD0� � 	injEy
D0�uD0�Ey

A�uA�EA�uA�ED0 �uD0� jin� ,

(14)

where

EA�uA� � Ah cosuA 1 Ay sinuA ,

ED0�uD0� � D0
h cosuD0 1 D0

y sinuD0 ,
(15)

and jin� is given by Eq. (5). After some algebra one finds

R�uA, uD0� � l2hR�uA, uB� 1 �N2 1 l2�1 2 h���2 ,

(16)
where

N � sinhx2 2 l
p

h coshx2 . (17)

Similarly we find

R�uA, 2D0� � l2hR�uA, 2B� 1 �N2 1 l2�1 2 h��
(18)

and

R�2A, uD0� � l2hR�2A, uB� 1 �N2 1 l2�1 2 h�� .

(19)

Putting these results together as per Eq. (6) we obtain

SA,D0 �
�N2�l2� 1 hSA,B 1 1 2 h

�2N2�l2� 1 2 2 h
. (20)

Consider first unit detection efficiency (h � 1).
Equation (20) shows that the nonlocal correlation is
preserved by the teleportation for any level of squeezing
provided we set

lop � tanhx2 . (21)

This effect is shown in Fig. 4 where the maximum of
SA,D0 is plotted against the feedforward gain l for various
levels of squeezing. As squeezing is reduced equal viola-
tions of locality are still achieved for lower levels of gain.
The range of feedforward gains for which nonlocal tele-
portation is achieved actually broadens to a maximum
value as the squeezing is reduced before narrowing again.

FIG. 4. The variation of SA,D0 with the gain l, for squeezing
of 10%, 50%, 80%, and 99%. Each graph has its maximum
when l � tanh x2, in which case S has the same value before
and after one of the beams is teleported. x1 � 0.1
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The mechanism for this surprising result can be under-
stood by examining the action of the teleporter on an arbi-
trary, single mode input field, ain. Under ideal conditions
the output field is given by

aout � lain 1 �coshx 2 l sinhx�B0

2 �l coshx 2 sinhx�Ay
0 . (22)

Notice that photons are added to the output through
the action of the creation operator, A

y
0 . These spurious

photons are detrimental to the observation of nonlocal
correlations. However, no photons are added to the output
if the gain condition lop � tanhx is chosen as the co-

efficient of A
y
0 goes to zero. The output is then given by

aout � lopain 1
q

1 2 l2
op B0 . (23)

Equation (23) is formally equivalent to pure attenuation
by a factor �1 2 l2

op�. Thus when the teleporter is oper-
ated with this gain the output beam D0 is simply an
attenuated version of B. Because S is a normalized quan-
tity, determined by a ratio of coincidence counts, attenua-
tion does not reduce it.

What we observe in Fig. 4 could be considered a
smooth transition between teleportation, when the tele-
porting OPO has strong squeezing, to continuous variable
entanglement swapping, when the teleporting OPO has a
conversion efficiency similar to that of the source OPO.
The teleportation limit is characterized by the exact re-
production of the state of B on D0. The beams A and
D0 are in the same polarization-number entangled state as
A and B were originally. On the other hand, in the en-
tanglement swapping limit, although every photon in D0

has become polarization entangled with a corresponding
photon in beam A (thus violating the CH inequality), the
number entanglement has become strongly diluted. This
is due to the effective attenuation which leaves many un-
paired photons in beam A. Since the fidelity of telepor-
tation is sensitive to the number entanglement it will be
reduced in this limit. The joint state of beams A and D0

is now strongly mixed. This situation has been referred
to by some authors as a posteriori teleportation [10].

Homodyne detection losses will reduce and, for h #

1�SA,B, eventually destroy the nonlocal effects. At the
optimum gain condition (now lop � tanhx2�ph ) this
means the homodyne detection efficiencies must be better
than about 83%. This limit is independent of the amount
of squeezing. However, reducing the squeezing of OPO2
increases the effective attenuation at the optimum gain
condition and hence reduces the coincidence count rate.
As a result longer counting times are required to observe
nonlocality. This reduction in signal to noise is typical
of entanglement swapping and is an unavoidable conse-
quence of operating below unity gain [11]. Nevertheless,
we believe an experimental demonstration is feasible with
current technology. For example, with h � 0.9 and 50%
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squeezing (x2 � 0.34) we find SA,D0 � 1.08 with coinci-
dence count rates reduced to about 10% of their untele-
ported values.

In summary we have shown that it is possible to
teleport the nonlocal correlations associated with number-
polarization entanglement using a continuous variable
scheme. The nonlocal correlations can be teleported for
any level of squeezing in the teleporting OPO (OPO2).
In general the best operating point for teleportation of
the entanglement is where the output of the teleporter
is simply an attenuated version of the input beam. This
operating point is clearly of importance for a large range
of superposition and entangled state inputs.
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