
VOLUME 83, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 6 SEPTEMBER 1999

2062
Magnons and Magnon-Phonon Interactions in Iron
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First-principle studies of magnons and magnon-phonon interactions are carried out in bcc and fcc
iron in the adiabatic approximation. It is shown that the phonons have a minor effect on magnons
in bcc Fe and thus the lattice vibrations make a small contribution to the Curie temperature. fcc Fe
is unstable against magnon excitations but the phonons seem to reduce this instability. The magnon-
phonon interactions are analyzed in terms of the pair-exchange interaction variations as functions of the
interatomic distances. The fcc results suggest that metastable fcc Fe in thin-film or nanostructure form
should have interesting magnetic properties.

PACS numbers: 75.10.Lp, 75.30.Ds
Generally, it is expected that phonons do not have an
appreciable effect on the magnetic properties of most
materials. However, some iron-rich systems have low
Curie temperature �Tc� which increases significantly with
a small lattice expansion. For example, R2Fe17 (R �
rare earth) compounds have Tc’s around 350 K which
increases to about 750 K with a volume expansion of
�6% [1]. Such systems, which are close to magnetic and/
or structural instability, should have reasonable magnon-
phonon interactions. Classic examples of such systems
are metastable fcc and amorphous Fe. fcc Fe has been
stabilized recently in thin films and as a precipitate in
Cu matrix [2]. Theoretical studies show that fcc Fe
is a weak magnet exhibiting magnetovolume instability
and noncollinear magnetic structure under compression
[3]. On the other hand, bcc Fe is a strong magnet
with a high Tc and stable magnetic structure. The very
different magnetic properties of bcc and fcc iron should
be reflected in their magnon dispersion curves without and
with phonon excitations.

Because of the complexity of the magnon-phonon
interactions, only a few simple model studies have
been reported so far [4–6]. Ab initio calculations of
the magnon spectra in the absence of phonons in some
transition metals have been reported only recently using
a frozen-magnon [7] and linear-response scheme [8].
The former calculations are based on linear muffin-tin
orbitals (LMTO) method in the atomic sphere approxi-
mation, while the latter use the full-potential LMTO
method. The results for Fe by the two methods are
similar for small wave vectors. We report here a
first-principles study of the influence of lattice vibra-
tions on the magnon excitations in bcc and fcc Fe
using a frozen-magnon frozen-phonon scheme. The
results show significant differences in the magnon
spectra of magnetically stable (bcc) and metastable (fcc)
structures.

Starting with the Hamiltonian, H, a brief outline of the
magnon-phonon theory is as follows:
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where the first term is the vibrational term in the harmonic
approximation with ua�i� being the a component of
the vector displacement of atom i from its equilibrium
position and the second term is the Heisenberg exchange
term with �S�i� as the unit vector. The distance dependent
exchange parameter j� �Ri , �Rj� is expanded in terms of the
atomic displacements as follows:
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where D �R�ij� � �u�i� 2 �u� j�, J �1�
a � �≠Jij�≠Ra�ij��j0,

and J
�2�
ab � �≠2Jij�≠Ra�ij�≠Rb�ij��j0. With this Hamil-

tonian one gets the following coupled equations in the
reciprocal q space for one atom per unit cell systems:
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anharmonic term in random phase approximation,
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and ub�q� �Eq� are the eigenvectors (eigenvalues) of
phonons and magnons, respectively, and �u2	 is the
mean-square displacement.
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In this work we are interested in studying the effect of
phonons on magnon dispersion curves. It is not necessary
to solve Eqs. (3) and (4) self-consistently for this purpose.
It is sufficient to perform magnon calculations for a lattice
distorted by a realistic simulation of the phonons. This
is done by using frozen phonons [9] whose amplitude is
the room-temperature mean-square displacement (�u2	 �
0.75% of the lattice constant). The wave vector of
the phonon is the same as that of the magnon. Thus,
we neglect multiphonon-multimagnon interactions. The
magnon energy Eq is related to the difference in the
total energy DE� �q, u� of the phonon-distorted lattice with
and without the frozen spin spiral of wave vector �q. In
the absence of spin-orbit interactions, DE� �q, u� � 1

2Equ2,
where u is the spin-spiral angle. Thus, Eq is given by the
second derivative of DE� �q, u� for small u.

DE� �q, u� is calculated for �q in the [001] direction for a
supercell of 1 3 1 3 20 atoms. The self-consistent spin-
polarized electronic structure calculations are based on
the LMTO method in the atomic sphere and local den-
sity approximations and use von Barth-Hedin exchange-
correlation potential [10]. Brillouin zone mesh of 16 3

16 3 6 (1536 k-points) is used for reciprocal space inte-
gration. This procedure involving noncollinear magnetic
structure is similar to that in Ref. [7].

The calculated magnon dispersion curve for bcc Fe is
plotted in Fig. 1. Our results for magnons in the absence
of phonons are similar to those in Ref. [7] including a
Kohn anomaly. For magnon-phonon interactions in bcc
Fe we use a longitudinal phonon mode because its energy
is similar to that of the magnon. The magnon dispersion
curve with magnon-phonon interactions is similar to the
one without interactions, and the calculated results are

FIG. 1. Magnon energies in [001] direction for bcc Fe.
Dashed curve represents the result when the frozen phonon
with the same wave vector is present. The experimental data
are from Ref. [11].
in very good agreement with the experimental data at
4 and 300 K available only at small �q [11]. One can
see that the lattice vibrations have very little effect on
the magnon spectrum including the Kohn anomaly. This
can be understood from the dependence of the exchange
parameters on intratomic distance as discussed below.

In case of bcc Fe single-atom displacement towards
one of the nearest neighbors in a 16-atom (15 atoms
or 5 neighbor shells are stationary) supercell is used to
derive J� �Ri 2 �Rj�, while a 32 atom supercell is used
for fcc Fe and hcp Co. The details of the calculations
of exchange parameters based on the LMTO method
are given in Ref. [12]. We use 20 3 20 3 20 divisions
of the Brillouin zone for k-space integration in both
cases. The calculated J�j �Ri 2 �Rjj� as a function of
interatomic distance is plotted in Fig. 2. The almost
linear dependence for both the first- and second-neighbor
exchange parameters in bcc Fe implies a very small
value of J �2�, the second derivative of exchange parameter
responsible for the magnon-phonon coupling. This also
implies a small phonon contribution to the total exchange
parameter J0 and hence to the Curie temperature. A direct
calculation of the change in J0 with the displacement
shows that this effect is less than 4%. We also see from
Fig. 2 that the exchange parameter dependence on the

FIG. 2. Distance dependence of the exchange parameters for
bcc Fe, hcp Co, and for two different volumes of fcc Fe.
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interatomic distance for hcp Co is similar to that of bcc
Fe. Thus the magnon-phonon interactions in hcp Co are
expected to be similar to those in bcc Fe, i.e., weak.

The [001] magnon dispersion curves for fcc Fe
(Wigner-Seitz radius � 2.76 a.u.) are shown in Fig. 3.
We see that the ferromagnetic (FM) state of fcc Fe
becomes unstable (negative magnon energies) when
subjected to magnon excitations. The ground state is
not collinear at this volume due to the strong negative
interactions with third neighbors (24 of them) despite
the positive total exchange parameter obtained using
infinitesimal rotation from the FM state. The origin of
this instability is related to the sharp peak in the t2g

majority spin states at the Fermi energy. This results in a
large change in the density of states at the Fermi energy
with a small change in the volume which leads to a strong
volume dependence of the magnetization and exchange
interactions in fcc Fe. Such an instability does not exist
in bcc Fe because nearest neighbors are much closer in
bcc than in fcc Fe and therefore t2g states in the former
have a small delocalized peak at the Fermi energy due to
the strong hybridization. We refer the reader to Refs. [3]
and [12] for more details.

It is interesting to note in Fig. 3 that magnon-phonon
interactions are quite large in fcc Fe (a transverse phonon
mode is considered because its energy is closest to the
magnon energy) and have the effect of making the FM
order “less unstable” against magnon excitations. This
can also be understood from the exchange parameter
dependence on the interatomic distance for fcc Fe given
in Fig. 2. The first-neighbor exchange parameters have a
dip near the equilibrium distance. This makes J�2� large
which leads to appreciable magnon-phonon interactions
in fcc Fe. Jij’s have larger dips for smaller volumes

FIG. 3. Magnon energies in [001] direction for fcc Fe. The
dashed curve represents the result when the frozen phonon with
the same wave vector is present.
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which suggests an even stronger effect of the lattice
vibration on the magnon spectrum. Of course, fcc Fe is
antiferromagnetic at these volumes.

The magnetovolume effect and magnon-phonon inter-
actions in fcc Fe suggest that once fcc Fe is formed in
thin films or nanostructures, it should have very interest-
ing magnetic properties such as spin frustration and glassi-
ness as functions of the volume and temperature. Also
magnon instability in fcc Fe is an indication as to why
Tc is low in fcc-like Fe-rich compounds mentioned in the
introduction.

In conclusion, we have shown from first principle cal-
culations that the magnon-phonon interactions are neg-
ligible in the stable phase (bcc) of Fe. The fcc phase
develops soft magnons implying magnetic instability. The
magnon-phonon interactions are significant in fcc Fe and
make the lattice less unstable against magnon excitations.
These properties are related to the volume dependence of
the magnetization and exchange interactions and can be
understood in terms of the variations of the exchange pa-
rameters with interatomic distances.
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