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We study the dc conductance and current fluctuations in mesoscopic diffusive SNS junctions
subgap applied voltageseV , 2D. We find that in spite of the multiple Andreev reflections, the
current-voltage characteristic of a long SNINS structure obeys Ohm’s law. At the same time, no
equilibrium heating of subgap electrons produces giant shot noise with pronounced subharmonic
structure which corresponds to stepwise growth of the effective transferred charge. AteV ! 0, the shot
noise approaches the magnitude of the Johnson-Nyquist noise with the effective temperatureT� � D�3.
We analyze the role of inelastic scattering and present a criterion of strong nonequilibrium.

PACS numbers: 74.50.+r, 74.20.Fg, 74.80.Fp
rved

g
S)
f

Current transport through mesoscopic resistive eleme
(tunnel barriers and disordered normal conductors) a
tached to superconductors is a subject of permanent int
est and intensive experimental studies. The investigatio
of superconducting junctions are primarily focused on th
complex nonlinear behavior of current-voltage characte
istics, which exhibit subharmonic gap structure, zero bi
anomaly, etc. In this Letter, we will discuss an elemen
tary mesoscopic superconducting structure where the c
rent shot noise manifests anomalous transport propert
while the average current shows perfect Ohmic behavio

The circuit under discussion consists of a low
transmission tunnel junction (or point contact) connecte
to voltage biased superconducting reservoirs via diffusi
normal leads (Fig. 1a), like, e.g., a short-gate Josephs
field effect transistor [1]. In a normal-insulator-norma
(NIN) structure connected to normal reservoirs, the ave
age current obeys Ohm’s law and the current fluctuatio
show full Poissonian shot noise,S � 2eI, if the tunnel
resistanceR dominates over the resistance of the norm
leads [2]. The effect of the superconducting reservoir
which has recently attracted much attention, is to modi
the density of states and to create a gapEg in the electron
spectrum of the normal leads [3]. This proximity effec
provides dc Josephson current flow and, simultaneous
blocks the single-particle tunneling at applied voltage
eV , 2Eg. At these subgap voltages, the current
due to multiparticle tunneling (MPT) [4]. The MPT
regime is manifested by the stepwise decrease of t
current with decreasing applied voltage (subharmonic g
structure ateV � 2Eg�n), which provides exponential
decay of the current [5]. At the same time, the curre
shot noise undergoes enhancement due to the growth
the elementary tunneling chargene [6]. MPT has been
extensively studied theoretically in quantum point contac
[5,7], and in short diffusive constrictions [8] with a wide
proximity gap of the order of the energy gapD in the
superconducting reservoirs. Both the subharmonic g
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structure and the enhanced shot noise have been obse
experimentally [9,10].

A distinctly different transport regime occurs in lon
diffusive superconductor-normal-superconductor (SN
junctions with a small proximity gap of the order o
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FIG. 1. (a) Diffusive mesoscopic junction with a tunnel
barrier at x � 0 (dashed line). (b) Schematic picture of
incoherent MAR. An equilibrium electron incoming from
the superconducting reservoir consequently tunnels through M
Andreev side bands and creates elementary probability current
Q flowing along the energy axis between the equilibrium
regions outside the gap. Each crossing of the barrier is
associated with the transfer of the elementary charge e, and
the electric current is eQ�M 1 1�.
© 1999 The American Physical Society
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the Thouless energy, Eg � ETh ø D. In this case,
the Josephson current is suppressed, and single-particle
tunneling dominates at virtually all applied voltages,
ETh ø eV , 2D. However, when the inelastic mean
free path exceeds the distance between the supercon-
ducting reservoirs, current transport at subgap voltages
eV , 2D is still nontrivial: the tunneling electrons must
undergo multiple Andreev reflections (MAR) before they
enter the reservoirs [11]. We will show that in long SNS
structures with opaque tunnel barriers, the current-voltage
characteristic is perfectly linear and structureless, while
the current shot noise is greatly enhanced and reveals
subharmonic gap structure (kinks) at voltages eV � 2D�n
(incoherent MAR regime).

The origin of the linear current-voltage dependence
and the significant deviation of tunnel shot noise from
the Poisson law can be qualitatively explained in the
following way. In order to overcome the energy gap
at low voltages (eV ø 2D) the electron has to undergo
a large number (M � 2D�eV ) of Andreev reflections,
gaining the energy eV in each passage of the tunnel
barrier (Fig. 1b). Thus, MAR tunneling in real space is
associated with probability current flow along the energy
axis through a structure of M 1 1 tunnel barriers with
the total effective resistance RM � �M 1 1�R. Since only
electrons incoming within the energy layer eV below the
gap 2D participate in MAR transport, the total probability
current is Ip � V�RM . However, each pair of consecutive
Andreev reflections transfers the charge 2e through the
junction, and the real current I is therefore M 1 1 times
greater than the probability current: I � �M 1 1�Ip �
V�R. The current flow in energy space generates shot
noise Sp which is related to the probability current as Sp �
�2�3�eIp in the limit M ! `. The arguments for the 1�3
suppression of the Poissonian noise in multibarrier tunnel
structures are similar to the ones presented in Ref. [2].
Since the noise spectral density is given by the current-
current correlation function, the real shot noise S is �M 1

1�2 times greater than Sp , i.e., approaches a constant value
S � �4�R� �D�3�. This coincides with the exact result,
Eqs. (9) and (10) below, in the limit eV ! 0.

For a quantitative treatment of incoherent MAR, we
consider the diffusive kinetic equation [12] for the 4 3 4
supermatrix Keldysh-Green’s function Ǧ�x, t1, t2�

i=J̌ � �Ȟ, Ǧ�, Ǧ2 � 1̌, J̌ � D Ǧ=Ǧ , (1)

where D is the diffusion constant. We apply Eqs. (1)
to the electrons in the normal leads and match the
Green’s functions at the tunnel barrier (x � 60) of low
transparency (G ø 1) using the boundary condition [13]

J̌�20� � J̌�10� � � j�2� �Ǧ�20�, Ǧ�10�� ,

j � �1�2�yFG .
(2)

Equation (2) represents the conservation law for the su-
permatrix current J̌ and connects it with the voltage-
induced imbalance of elementary probability currents j
of tunneling electrons. Since we have assumed that the
barrier resistance R dominates over the resistance Rd

of the leads (R ¿ Rd), the voltage drop at the barrier
determines the time-dependent phase difference between
the reservoirs by virtue of the Josephson relation. A
gauge transformation allows us to remove the time de-
pendence in the Hamiltonian in Eq. (1) and cancel the
electric potential. Simultaneously, a periodic time de-
pendence appears in the boundary condition of Eq. (2),
which implies that the Green’s function Ǧ�x, t1, t2� con-
sists of a set of harmonics Ǧ�x,En,Em�, En � E 1 neV .
The problem is solvable in the limit of weak Josephson
coupling, G ø 1 and/or ETh ø D, when off-diagonal
Green’s function harmonics can be neglected and the di-
agonal harmonics (n � m) satisfy the static equations,
similar to the case of zero applied voltage.

The dc current I can be expressed, to first order in
G, through the quasiparticle distribution function f�E�
defined by the following representation of the Keldysh
function: ĝK � ĝRf̂ 2 f̂ĝA, f̂ � 1̂�1 2 f� 1 szfz ,
where ĝR,A are the retarded (advanced) Green’s functions,
giving

I �
1

2eR

Z 1`

2`
dE N�E�N�E1� � f�E� 2 f�E1�� . (3)

The density of states, N�E� � �1�4� Trsz�ĝR 2 ĝA�, is
calculated for a nontransparent barrier and normalized by
the normal-electron density of states; all values are taken
at the interface, x � 0. Equation (3) has the same form as
the conventional equation of the tunnel model [14], with
the nonequilibrium distribution function f�E, x� obeying a
kinetic equation following from Eq. (1),

≠

≠x
D�E, x�

≠f
≠x

�
N�E, x�

t´

� f�E, x� 2 f0�E�� , (4)

D�E, x� � �D�4� Tr�1 2 ĝRĝA�. The inelastic scattering
term in Eq. (4), describing relaxation to equilibrium
population f0�E� � 2nF�E�, is written for simplicity
in the relaxation time approximation. The boundary
condition for the function f at the tunnel interface
obtained from Eq. (2) reads

2D�E, x� �≠f�≠x� j0 � Q1�E� 2 Q2�E� , (5)

Q6�E� � 6� j�2�N�E�N�E61� � f�E� 2 f�E61�� .

The quantities Q6, which also determine the current in
Eq. (3), can be interpreted as spectral quasiparticle cur-
rents, i.e., probability currents flowing upwards in energy
space (Fig. 1): the current Q1 exits from energy E to-
wards energy E 1 eV , while the current Q2 arrives at
energy E from energy E 2 eV . Along this line of rea-
soning, the boundary condition, Eq. (5), represents the de-
tailed balance between the spectral quasiparticle current
and the leakage current [the term on the left-hand side of
Eq. (5)] due to either inelastic relaxation or escape into the
reservoirs.

Let us consider the limit of infinitely large inelastic re-
laxation time [15]. In this case, the leakage current is
2051
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spatially homogeneous according to Eq. (4). Within the
energy gap, jEj , D, the diffusion coefficient D�E, x�
turns to zero in the superconducting reservoirs, and there-
fore the leakage current is blocked, indicating complete
Andreev reflection. Thus, the spectral current Q6 is con-
served within the superconducting gap: Q1 � Q2. This
equation provides recurrence relations for the nonequilib-
rium distribution functions f�En� in different sidebands
associated with MAR. The boundary conditions are estab-
lished by the requirement of equilibrium outside the gap,
f�En� � 2nF�En�, jEnj . D. Indeed, the reservoirs main-
tain the equilibrium at the NS boundaries, f�E, 6d� �
2nF�E�; on the other hand, the gradient of the distribution
function given by Eq. (5) is small, �Rd�R ø 1, and may
be neglected. We note that the latter condition is equiva-
lent to a small ratio between the diffusion time through the
normal lead, d2�D � E21

Th , and the inverse tunneling rate,
�GyF�d�21, i.e., GyF�d ø ETh ø D.

The physical picture of MAR in diffusive SNINS sys-
tems is illustrated in Fig. 1b. The equilibrium electron-
like quasiparticles incoming from the left electrode with
energy 2D 2 eV , E0 , 2D create a probability
current Q"�E0� � jnF�E0�N�E0�N�E0 1 eV � across the
tunnel junction into the subgap region. Because of low
transmissivity of the barrier and fast electron diffusion
through the normal leads, the particle undergoes many
Andreev reflections from the superconductor before
the next tunneling event will occur and, therefore, the
electron and hole states at energy E1 � E0 1 eV are
occupied with equal probability �1�2�f�E1� [16]. Thus,
the population f�E1� produces both the current of holes
Q"�E1� � � j�2�f�E1�N�E1�N�E2� moving upwards along
the energy axis to the next side band, and the countercur-
rent of electrons Q#�E1� � � j�2�f�E1�N�E0�N�E1� down
to the initial state, determining the net probability current
Q�E0� � Q"�E0� 2 Q#�E1�, and so on. As a result, the
electron tunneling in real space is associated with the flow
of spectral current Q1�Em� � Q2�Em� � Q�E0� through
M 1 1 tunnel barriers connected in series by a number
M�E0� � Int��D 2 E0��eV � of Andreev side bands
(Int�x� denotes the integer part of x). In this transport
problem in energy space, there is an effective bias voltage
�M 1 1�eV drop between the reservoirs represented by
the spectral regions outside the energy gap, jEj . D, and
it is equally distributed among the barriers. Therefore,
the distribution function has a steplike form,

f�Em� � 2

∑
�nF�EM11� 2 nF�E0��

Zm
ZM11

1 nF�E0�
∏

,

(6)

Zm�E0� �
m21X
k�0

N21�Ek�N21�Ek11�, Z0 � 0 . (7)

The tunnel current in Eq. (3) is determined by the
spectral current Q1. At low temperature, the equilibrium
spectral current at jEj . D is exponentially small, and
the main contribution to the total current comes from the
nonequilibrium subgap region. Dividing it into pieces
2052
of length eV and taking into account spectral current
conservation, one finds from Eqs. (3) and (6)

I�V � �
1
eR

Z 2D

2D2eV
dE0

M 1 1
ZM11

�nF�E0� 2 nF�EM11�� .

(8)

Equation (8) describes the single-particle current in a
tunnel junction of arbitrary length. If some MAR chain
contains a sideband En within the proximity-induced gap
2Eg, the corresponding density of states N�En� is zero,
and the spectral current associated with this chain is
blocked. At eV , 2Eg, any MAR chain has at least one
side band within the gap, and the total single particle
current in Eq. (8) vanishes. In the limit of a long junction,
the proximity gap closes and the local density of states
becomes constant, N�E� � 1. In this case, the current
in Eq. (8) shows Ohmic behavior, I � V�R, with the
same resistance R as in the absence of superconducting
“mirrors.”

Let us turn to the calculation of the tunnel current shot
noise power S�V �. A general quantum equation for the
shot noise in superconducting junctions has been derived
in [17]. Assuming the asymptotic limit of a highly resistive
tunnel barrier and the long-junction approximation we
write it in the form

S�V � �
Z 1`

2`

dE
R

� f�E� 1 f�E1� 2 f�E�f�E1�� . (9)

Taking into account the distribution function in Eq. (6), the
noise power at zero temperature becomes

S�V � �
2
R

Z 2D

2D2eV

dE
3

∑
M�E� 1 1 1

2
M�E� 1 1

∏
.

At voltages eV . 2D this formula gives conven-
tional Poissonian noise S � 2eI . At subgap voltages,
the noise power undergoes enhancement: it shows
a piecewise linear voltage dependence, dS�dV �
�2e�3R� �1 1 4��Int�2D�eV � 1 2��, with kinks at the
subharmonics of the superconducting gap, eVn � 2D�n
(see Fig. 2). At zero voltage, the noise power approaches
the constant value S�0� � �4�R� �D�3�, which corre-
sponds to the thermal Johnson-Nyquist noise with the
effective temperature T� � D�3.

The enhancement of the shot noise power can be alter-
natively interpreted as an increase of the effective charge
q�V � � S�V ��2I with decreasing voltage,

q�Vn�
e

�
1
3

µ
n 1 1 1

2
n 1 1

∂
� 1,

11
9

,
22
15

, . . . (10)

In the limit eV ! 0 the effective charge increases as
q�V ��e � �1�3� �1 1 2D�eV �. This result differs by a
factor 1�3 from the value expected from a straightforward
MAR argument which assumes the shot noise to be equal
to the Poisson noise enhanced by the factor M. We stress
that the 1�3 factor here results from multiple traversal of
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FIG. 2. Spectral density S�V � of current shot noise and
effective transferred charge q�V � � S�V ��2I as functions of
applied voltage V . In the absence of inelastic collisions (solid
lines), the shot noise power approaches the finite value S�0� �
�4�R� �D�3� at eV ! 0, and the effective charge increases as
q�V � � �e�3� �1 1 2D�eV �. The effect of inelastic scattering
is represented by dashed lines for the nonequilibrium parameter
W´ � 5. The dependence S�V � contains kinks at the gap
subharmonics, eV � 2D�n, as shown in the inset.

the tunnel barrier due to incoherent MAR and has nothing
to do with the diffusive normal leads.

A more detailed analysis with account of inelastic scat-
tering shows that the current shot noise is suppressed at low
voltage when the lifetime of a quasiparticle within the nor-
mal leads becomes comparable to the inelastic relaxation
time [a $ 1; see Eq. (11)]. Generalized recurrences for
the distribution function in long junctions [N�E� � 1] then
take the form [18]

f�E� 2 f0�E� �W´� f�E1� 1 f�E21� 2 2f�E�� .

The level of nonequilibrium of the subgap electrons is con-
trolled by the parameter W´ � �Rd�R� �ETht´�4�. The
strong nonequilibrium state discussed above is possible
only at W´ $ 1 whereas in the opposite limit, W´ ø 1,
the normal leads may always be considered as reservoirs,
and the enhanced noise disappears.

Numerical results for W´ � 5 are presented in Fig. 2
by dashed curves. The rapid decrease of S�V � at low volt-
age described by the following analytical approximation,

S�V � � S�0�
3
a

µ
tanh

a

2
1

a 2 sinha

sinh2a

∂
, a �

D

eV
p
W´

,

(11)

occurs when the length of the MAR chain interrupted by
inelastic scattering, eV

p
W´, becomes less than 2D.

In conclusion, we have studied subgap tunnel current
and current shot noise in diffusive SNINS structures. We
found that in junctions with normal leads which are much
longer than the coherence length but much shorter than
inelastic mean free path, the strongly nonequilibrium dis-
tribution of the subgap electrons created by MAR is mani-
fested in the shot noise rather than in the tunnel current.
While the tunnel current obeys Ohm’s law, the current shot
noise is significantly enhanced and shows subharmonic gap
structure. This conclusion is also valid for junctions where
the tunnel barrier is replaced by a point contact or locally
suppressed diffusion constant; moreover, the properties of
incoherent MAR are qualitatively similar in homogeneous
SNS junctions where the normal resistance exceeds the re-
sistance of NS interfaces.
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