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We study the interactions between the coherent quasiparticles and the incoherent Mott-Hubbard
excitations and their effects on the low-energy properties in the U � ` Hubbard model. Within the
framework of a systematic large-N expansion, these effects first occur in the next-to-leading order in
1�N . We calculate the scattering phase shift and the free energy, and determine the quasiparticle
weight Z, mass renormalization, and the compressibility. It is found that the compressibility is strongly
renormalized and diverges at a critical doping dc � 0.07 6 0.01. We discuss the nature of this zero-
temperature phase transition and its connection to phase separation and superconductivity.

PACS numbers: 74.25.Jb, 71.10.Fd, 71.27.+a
In recent years, there has been a growing interest in the
physics of doped Mott insulators in connection with high-
Tc superconductors. In the absence of a natural small pa-
rameter, relevant models of strong correlation have been
extended and studied under large symmetry groups (large
N) or large dimensions (large d). A generic feature of
strong correlation is the coexistence of coherent quasipar-
ticles [1] and the broad incoherent Mott-Hubbard excita-
tions [2] that carry the main part of the spectral weight at
small doping. It has been shown in the t-J model that the
systematic large-N expansion in the slave boson formal-
ism provides a transparent nonperturbative description of
both the low-energy Fermi-liquid-like quasiparticles [3] al-
ready present in the large-N limit, and the incoherent Mott-
Hubbard features at next-to-leading order in 1�N [4].

In this paper, we study corrections to the low-energy
properties due to the effects of the interactions between
quasiparticles and the incoherent Mott-Hubbard excita-
tions by a complete calculation of the free energy and the
single-particle Green’s function to next-to-leading order in
1�N . This has not been understood properly because of
the difficulty involved in calculating the corrections to the
mean-field parameters. For simplicity, we shall consider
the U � ` Hubbard model with the spin symmetry group
generalized from SU(2) to SU�N�, although the physics
discussed here pertains to models that include superex-
change interactions such as the t-J model. This model has
been solved for N � `. The ground state is a Fermi liquid
at finite hole concentrations and exhibits a Brinkman-
Rice transition at half filling [5]. We find that the interac-
tions represented by the 1�N fluctuations are very strong
near half filling, giving rise to a divergent compressibility
at a finite critical doping dc � 0.07 6 0.01 below which
the Fermi liquid phase becomes unstable. In contrast to
the Brinkman-Rice transition at half filling in the large-N
limit, the quasiparticle residue Z and the mass renormal-
ization are only weakly renormalized and remain finite at
dc. These results suggest that the Landau Fermi liquid
parameters are strongly renormalized. In particular, the
0031-9007�99�83(10)�2046(4)$15.00
instability is associated with Fs
0 ! 21 as d is reduced to-

ward dc, signaling the onset of phase separation and/or
superconductivity.

We begin with the slave boson representation of the
Hubbard model. In the infinite-U limit, the model de-
scribes electrons with nearest-neighbor hopping, t, on a
2D square lattice, subject to the constraint that double
occupancy on each site is prohibited. It is convenient to
describe the projected Hilbert space in terms of a neutral
spin-carrying fermion, f

y
is , creating the singly occupied

site and a spinless charge-e boson, bi , keeping track of the
empty site [5]. The electron creation operator becomes
c
y
is � f

y
isbi . In the SU�N� generalization, the occupancy

constraint thus translates into f
y
isfis 1 b

y
i bi � N�2,

where sum over repeated s � 1, . . .N index is implied.
The partition function in the coherent state path integral
formulation is

Z �
Z

DbyDbDfyDfDle
2

Rb

0
L�t� dt

, (1)

where the Lagrangian is given by

L �
X
i

� fyis�≠t 2 m�fis 1 b
y
i ≠tbi�

2
t
N

X
�i,j�

� fyisfjsb
y
j bi 1 H.c.�

1
X
i

ili� f
y
isfis 1 b

y
i bi 2 N�2� . (2)

Here li is a static Lagrange multiplier enforcing the local
constraint and m is the chemical potential fixing an average
of d holes or n particles per site, i.e., � fyisfis� � N�1 2

d��2 � n. The Lagrangian in Eq. (2) has a U(1) gauge
symmetry; it is invariant under local U(1) transformations:
bi ! bieiui , fis ! fiseiui , and li ! li 2 ≠tui . We
choose the radial gauge [6] where the boson fields (bi , b

y
i )

are replaced by a real amplitude field ri while li is
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promoted to a dynamical field li�t�. In this gauge, the
fermionic excitations can be identified with the Fermi
liquid quasiparticles.

To enable a 1�N expansion to the next-to-leading order,
we write the boson fields in terms of static mean-field and
dynamic fluctuating parts,
ri�t� � b�1 1 dri�t��, ili�t� � l 1 idli�t� . (3)

In the first part of the paper, we shall calculate b, l,
together with the chemical potential m to the next-to-
leading order. Using these results, we then analyze the
single-particle Green’s function, and determine the wave
function renormalization Z and the quasiparticle mass
renormalization and the compressibility.

Substituting Eq. (3) into Eq. (2), and integrating out the
fermions and the boson fields (dr, dl) to quadratic order in
Eq. (1), we obtain the free energy F � 2kT lnZ to next-
to-leading order in 1�N ,

F � 2
N
b

X
k,vn

ln�ek 2 ivn� 1 l

µ
b2 2

N
2

∂
1 Fbos ,

(4)

where vn is a fermion Matsubara frequency, ek �
2

2tb2

N gk 1 l 2 m with gk � coskx 1 cosky , and Fbos
is the contribution due to boson fluctuations. The latter
can be written in terms of the determinant of the inverse
boson propagator matrix D21,

Fbos �
1

2b

X
q,nn

ln DetD21�q, inn� , (5)

where nn is a boson Matsubara frequency. Note that in
order to properly regularize the theory in the radial gauge,
DetD21 should be evaluated on a discretized imaginary
time mesh before taking the continuum limit in t [7,8].
The opposite sequence of operations will lead to unphysi-
cal ultraviolet singularities. We find
DetD21�q, inn� � Pll�q, inn�Prr�q, inn� 2 P2

lr �q, inn�
1 2b2�l 2 eb�0��S2Plr �q, inn��inn .

(6)
Here S2 � e2inn02

2 einn0
2

is a regularization factor
and eb�q� � l 2 2t

P
gk2qnf�ek� with nf�e� the Fermi

distribution function. Pab � N�Pab 1 Bab� are the
fermion polarizations given by Brr � 2b2eb�q��N , Blr �
Brl � 2b2�N , Bll � 0, and

Pab �
X
k

nf�ek1
� 2 nf�ek2

�
ek1

2 ek2
2 inn

La�k,q�Lb�k, q� , (7)

where k6 � k 6 q�2 and L � �2�2tb2�N� �gk1
1

gk2
�, i� are the boson-fermion vertices.

The values of the parameters �b, l, m� are determined
by minimizing the free energy in Eq. (4), leading to three
self-consistent equations:

≠F
≠b

� 0,
≠F
≠l

� 0,
≠F
≠m

� 2n . (8)

Solving these equations to leading order in 1�N , where
only the fermion contribution enters Eq. (4), one recovers
the results of Kotliar and Liu [5], namely, a boson
condensate b2 � b2

0 � Nd�2 and a chemical potential
shift l � l0 � 2t

P
k gknf�ek�. This corresponds to a

Fermi liquid phase with a quasiparticle dispersion e
0
k �

2�2tb2
0�N�gk 1 l0 2 m0 and a quasiparticle residue

Z � b2
0 � Nd�2 � m�m�. The compressibility k0 �

dn�dm � Nr��1 1 4trje0j� where r �
P
k d�e0

k� and
re0 � 2

P
k gkd�e0

k �. It diverges as d ! 0, together
with Z ! 0 and m� ! `, giving rise to a Brinkman-Rice
metal-insulator transition [1].

The effects of interactions between the quasiparticles
and the incoherent Mott-Hubbard excitations enter through
Fbos in Eq. (4) at the next-to-leading order in 1�N [4,9].
It is instructive to rewrite Fbos in Eq. (5) by converting
the boson Matsubara sum into a contour integral distorted
along the real axis,

Fbos � 2
1

2p

X
q

Z `

2`
dn D�q, n�nb�n� , (9)

where nb is the Bose distribution function and

D�q, n� � 2 arctan

∑
Im DetD21�q, n�
Re DetD21�q, n�

∏
(10)

can be considered as a many-body phase shift due to
scattering of the fermions by particle-hole excitations.
We have numerically calculated the phase shift D at
T � 0 from Eqs. (6) and (10). Its general behavior is
shown in Fig. 1 for a fixed wave vector q � �2p�3, 2p�3�
as a function of frequency at different dopings. From
intermediate to high frequencies, the scattering is in the
unitary limit with D � p, indicating the existence of a
collective mode which is pulled out of the particle-hole
continuum at low frequency where D drops from p to zero.
Indeed, we find that DetD21 has a branch cut along the
real axis corresponding to the particle-hole continuum, and
isolated poles corresponding to a collective mode which is
well described by

v2
q 	 c2�sin2�qx�2� 1 sin2�qy�2�� 1 e2

b�q� , (11)

FIG. 1. Phase shift D�q, n� at q � �2p�3, 2p�3� for d �
0.05, 0.15 and comparison to holon contributions.
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where c ~ dt is the zero sound velocity and eb�q� co-
incides with the original slave-boson dispersion. This
mode has been identified as the “holon” in the t-J model
[4,9]. At small doping, the holon contribution, with v�

q 	
6eb�q�, dominates the particle-hole scattering as seen in
Fig. 1. It disperses over the entire lower Hubbard band and
carries the incoherent Mott-Hubbard spectral weight. Re-
markably, the holon contribution leads to a density-density
correlation function in excellent agreement with that ob-
tained from exact diagonalization of the t-J model on small
clusters [10].
2048
Now we solve the self-consistent equations in (8)
to next-to-leading order in 1�N including Fbos. Writ-
ing b � b0 1 b1, l � l0 1 l1, and m � m0 1 m1,
we find

b1 �
b0

2b

X
q,nn

Drr �q, inn�e2inn02

, (12)

m1 � l1 1
1
r

X
k

Sn�k, ek�d�ek� 1
4tb0b1e0

N
, (13)
l1 � 2
N
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2tb2
0

N
1
b

X
q,nn

gk2qDrr �q, inn�e2inn02

#

1
2t
b

X
k,vn

gkG
2
0�k, ivn�Sn�k, ivn� 1 2tje0j

X
k

Sn�k, ek�d�ek� 1
2
b

X
q,nn

�Drl�q, inn� 2 Drl�q, `�� . (14)

Here G21
0 � ivn 2 e

0
k and Sn�k, ivn� is the usual self-energy to leading order in 1�N [4,9],

Sn�k, ivn� �
2tb2

0

N
1
b

X
q,inn

gk2qDrr �q, inn�e2inn02

2
1
b

X
k,nn

G0�k 1 q, ivn 1 inn�

3 �Dll�q, inn�Sll 1 2Dlr �q, inn�Srl�Ek 1 Ek1q� 1 Drr �q, inn� �Ek 1 Ek1q�2� , (15)
where Ek � 2�2tb2
0�N�gk , Srl � e2inn02

, and Sll �
�e2inn02

1 einn02��2 are regularization factors for Drl

and Dll, respectively. Without them, the theory in the
radial gauge would be singular in the ultraviolet because
Drl and Dll approach constants at large frequencies [7].

Next, we present the results of our numerical evaluations
of Eqs. (12)–(14), which were done on a 2D mesh of up
to 60 3 60 points in the first quadrant of the Brillouin
zone using the microzone method and a frequency grid size
as small as Dv�t � d�20 to ensure convergence. The
result for the slave-boson condensate to next-to-leading
order in 1�N is shown in the inset of Fig. 2 for N � 2.
Interestingly, b vanishes at a doping d� 	 0.12. If we
approximate the Drr in Eq. (12) by the single holon mode
in Eq. (11) at small doping, we find an analytical estimate
b�b0 � 1 2 1�4Nd, which vanishes at a d� � 1�4N �
0.125, in good agreement with the numerical result.

It is important to note that at this order the boson con-
densate is not simply related to the quasiparticle residue.
To determine the Fermi liquid coherence factor Z, we fol-
low Refs. [4,9] and write down the 1�N-resummation of
the single-electron Green’s function,

G�k, ivn� �
b2�1 1 Sa�k, ivn��2

ivn 2 ek 2 Sn�k, ivn�
1 b2Si�k, ivn� ,

(16)

where Sn is given in Eq. (15), Sa and Si are the anoma-
lous part due to the boson condensate, and the incoherent
part of the self-energies, respectively. The latter are given
by, to leading order in 1�N ,

Si�k, iv� � 2T
X
q,nn

G0�k 1 q, iv 1 inn�Drr �q, inn� ,

(17)
Sa�k, iv� � 2T
X
q,inn

G0�k 1 q, iv 1 inn�

3 �Dlr �q, inn�Srl

1 �Ek 1 Ek1q�Drr �q, inn�� . (18)

The quasiparticle residue on the interacting Fermi surface
can be obtained from Eq. (16),

ZkF �
b2�1 1 ReSa�kF , 0��2

1 2 ≠ ReSn�kF , v��≠vjv�0
. (19)

Thus ZkF can be finite even if b2 is vanishing, provided
that the reduction of the condensate is compensated by
the contributions from the self-energies. Remarkably, this
turns out to be the route followed by the 1�N expansion.
To next-to-leading order in 1�N , one has

Z
1�N
kF � b2 1 2b2

0Sa�kF , 0� 1 b2
0≠Sn�kF , v��≠vjv�0 .

(20)

In Fig. 2, Z
1�N
kF is plotted as a function of doping in the GM

direction. The 1�N corrections are clearly small and ZkF
stays close to the large-N limit value. Within the single
holon mode [Eq. (11)] approximation, we found that the
1�d correction to b2 in Eq. (20) is canceled out by those
from the self-energy terms, leaving Z

1�N
kF weakly renor-

malized near d�. Thus we conclude that, while the bo-
son condensate vanishes at d�, the Fermi liquid coherence
remains finite.

We next turn to the compressibility of the model. In
Fig. 3, the electron chemical potential m � m0 1 m1 is
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FIG. 2. Quasiparticle residue ZkF as a function of doping d
in the GM direction. Inset: Slave boson condensate amplitude
b�b0 as a function of doping.

shown as a function of doping, which is strongly modi-
fied from the N � ` result. The corresponding compress-
ibility k � dn�dm is shown in the inset of Fig. 3. At
moderate dopings, k is approximately constant, but be-
comes strongly doping dependent as d is reduced. Inter-
estingly, there exists a critical doping dc � 0.07 6 0.01,
at which k diverges. Thus, the Fermi liquid state becomes
unstable below dc, while no singularity is present in ZkF .
To further understand the nature of the instability, we have
studied the quasiparticle mass renormalization defined by
m��m � N��0��N�0�, where N�0� � r and N��0� are the
bare (N � `) and the renormalized (next-to-leading order
in 1�N) quasiparticle density of states, respectively. The
numerical calculations of N��0� show that while m� is en-
hanced in the doping range 0.05 , d , 0.2, it does not
exhibit any singular behavior. A well-behaved N��0�, to-

FIG. 3. Electron chemical potential and the compressibility
(inset) as a function of doping.
gether with the general Fermi liquid result,

k �
≠n
≠m

�
N��0�

1 1 F0
s

, (21)

suggests that the divergence of k is a result of the Lan-
dau Fermi liquid parameter F0

s ! 21 at dc, indicative of
phase separation and/or superconducting instability [11].
Note that the phase separation in the infinite-U case has
a different origin than in models with strong antiferro-
magnetic correlations. For one hole, the ground state is
known rigorously to be a Nagaoka state [12] of a saturated
ferromagnet. For a finite density of holes, one expects
ferromagnetic correlations to compete with the kinetic
energy, and whether the Nagaoka state remains stable
is a question of great interest. Both numerical [13] and
analytical [14] results have shown that the uniform Na-
gaoka ferromagnetic state is unstable for any finite hole
concentration. Our results naturally suggest a novel pos-
sibility that at low doping the system phase separates into
hole-poor ferromagnetic and hole-rich paramagnetic re-
gions. In the presence of long-range Coulomb repulsion,
we expect the p-wave pairing instability [5] enhanced
by the tendency towards phase separation to dominate
[15,16]. We conclude that the breakdown of the Fermi
liquid in our case is not due to a gradual reduction of
the Fermi liquid coherence, but rather the enhanced in-
teractions between the quasiparticles. This is the kind of
Fermi liquid instability originally envisioned by Landau.
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