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We derive the phase diagram for the one-dimensional model of a ferroelectric perovskite recently
analyzed by Egami, Ishihara, and Tachiki [Science 261, 1307 (1993)]. We show that the interplay
between covalency, ionicity, and strong correlations results in a spontaneously dimerized phase which
separates the weak-coupling band insulator from the strong-coupling Mott insulator. The transition
from the band insulator to the dimerized phase is identified as an Ising critical point. The charge
gap vanishes at this single point with the optical conductivity diverging as s�v� � v23�4. The spin
excitations are gapless above the second transition to the Mott insulator phase.

PACS numbers: 71.30.+h, 71.10.Pm, 77.80.–e
Much effort has been devoted to understanding the
response of strongly correlated electron systems to lattice
distortions. A surprisingly pronounced enhancement
of such response has recently been observed in nu-
merical studies of a prototype one-dimensional (1D)
model for ferroelectric perovskites [1] (originally this
model was introduced in the context of quasi-1D organic
materials [2]).

The Hamiltonian of the model is
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at half filling. The odd and even sites represent oxygen
atoms (O) and a generic cation (C), respectively, with
the energy difference EC 2 EO � 2D. The hopping
amplitude t determines the amount of covalency and
U stands for the on-site Coulomb repulsion. In spite
of its apparent simplicity, model (1) reveals nontrivial
physics. At U � 0 it describes a band insulator (BI)
with a spectral gap for all excitations. At D � 0 it is
a Mott insulator (MI) with a finite charge gap, mc, but
with gapless spin excitations. In fact, in the strong-
coupling limit U ¿ �t, D�, (1) can be mapped onto a
Heisenberg model by projecting out all doubly occupied
sites. In the leading order, only a nearest-neighbor
exchange J � 4t2U��U2 2 4D2� is generated [2]. The
resulting Heisenberg chain is well known to possess a
gapless spin spectrum. The issue of interest is the nature
of the crossover from the BI regime to the MI regime
which, on general grounds, is expected to occur in the
strong-coupling region where the single-particle BI gap D

becomes comparable with the MI charge gap mc.
Thus, increasing U at fixed D, one expects a transition

to a spin-gapless phase. In addition to this spin transition,
the charge degrees of freedom should be also affected in
the course of the crossover. This can easily be understood
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in the case t ø �U, D� where, upon increasing U, the sys-
tem approaches a mixed-valence regime in which the two
charge configurations, O22C12 with energy U 2 2D and
O21C11 with zero energy, become degenerate. There-
fore, those excitations responsible for the charge redis-
tribution among these two configurations should soften
around some value of U. The finite-size simulations [1,3–
6] suggest that the mixed-valence regime is accompanied
by a strongly enhanced response to the coupling with
zone-center optical phonons j,
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where l is the electron-phonon coupling constant and D
is the dimerization operator. In fact, the so-called average
dynamical charge Z� � limj!0�P�j� 2 P�0���j, where
P�j� is the polarization, diverges at a particular point,
even in finite-size simulations [4,5]. This is due to
the accidental degeneracy between two singlet ground
states with opposite parity which occurs in any finite-size
system with the number of sites a multiple of 4 [4,5].
More importantly, Resta and Sorella [6] have recently
observed that the localization length of the ground-state
wave function diverges at some value of U, which
suggests vanishing of the charge gap, hence the charge
transition.

However, the overall picture which emerges from
numerical simulations and the existing mean-field cal-
culations [4], clearly underestimating the crucial role of
fluctuations in 1D, is still far from being satisfactory. It
remains unclear whether the charge instability occurs at
the same point as the spin transition. Even the nature of
the transition (transitions?) is not known. Is it a first-order
transition or is it a second-order one? In the latter case,
what is the universality class it belongs to? To the best
of our knowledge, there have been no consistent analytic
attempts to resolve these intriguing questions.
© 1999 The American Physical Society
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In this Letter we present theoretical arguments showing
that there are two continuous transitions: the spin tran-
sition of the Kosterlitz-Thouless (KT) type at U � Uc2,
and the charge transition at U � Uc1 , Uc2, the latter
identified as an Ising critical point where the charge gap
vanishes. In the intermediate region, Uc1 , U , Uc2,
the system occurs in a spontaneously dimerized insulating
phase (SDI), with the site parity spontaneously broken,
doubly degenerate ground state, and �D � being the order
parameter.

We start our discussion by addressing the mechanism
of the spin gap generation in the MI phase. For the
single-chain Hamiltonian (1), which is SU(2) and site-
parity invariant, the only possibility compatible with the
symmetries is a spontaneous spin dimerization, like the
one occurring at J2�J1 	 0.24 in the frustrated Heisenberg
chain with nearest-neighbor (J1) and next-nearest-neighbor
(J2) exchanges [7]. The same scenario is realized in our
case below a critical value Uc2. Moreover, in the J1-J2
model, there exists a solvable point [8], J2 � 0.5J1, where,
in any finite chain with an even number of sites, the even
and odd parity singlets become exactly degenerate ground
states. This is similar to the above mentioned accidental
degeneracy which occurs in model (1).

To demonstrate that the same scenario is realized in
our case upon decreasing U in the MI phase, we develop
the low-energy effective field theory for the lattice model
(1). Considering the weak-coupling case, �U, D� ø t, we
linearize the spectrum and pass to the continuum limit by
substituting a

21�2
0 cns ! incRs�x� 1 �2i�ncLs�x�, x �

na0, where a0 is the lattice spacing, and cR,L�x� are
the right and left components of the Fermi field. These
fields can be bosonized in a standard way [9]: cR,L;s �
�2pa�21�2e6i

p
4pfR,L;s , where fR�L�,s are the right (left)-

moving Bose fields. We define Fs � fRs 1 fLs and
introduce linear combinations, Fc � �F" 1 F#�
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2, to describe the charge and spin
degrees of freedom, respectively. Then the Hamiltonian
density of the bosonized model is given by Heff �
Hc 1 Hs 1 Hcs. Here the charge and spin sectors are
described by
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where Pc,s are the momenta conjugate to Fc,s, and yc,s
are the velocities of the charge and spin excitations.
Actually, Hs in (4) is an Abelian bosonized version
of the SU�2�1-symmetric Wess-Zumino-Novikov-Witten
model with a marginally irrelevant (g1 . 0) current-
current perturbation, 22g1JR ? JL, given by the last two
terms in (4). The two sectors of the theory are coupled
by the D term,

Hcs � 2�2D�pa� sin
p

2p Fc cos
p

2p Fs. (5)

Assuming that the spin sector is gapless while the charge
one is gapped, one can integrate out the charge degrees of
freedom to obtain in the second order in D a nontrivial
renormalization of g1: g̃1 � g1 2 C�D�mc�2yc, where
C � 1 is a nonuniversal numerical constant. Until g̃1 .

0, the spin spectrum remains gapless. However, when
U is decreased, g̃1 eventually becomes negative, and the
system undergoes a continuous (KT) transition to the SDI
phase with a nonzero spin gap (notice that the charge gap
stays finite across the transition). Using the exact result
for the small-U Hubbard model, mc �

p
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concludes that
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The appearance of the SDI phase can be also inferred
starting from the BI phase. In the absence of interaction,
the electrons are decribed by the Hamiltonian
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where jkj , p�2, ´k � 22t cosk, C
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is a two-component Fermi field, and t1,2,3 are the Pauli
matrices. We also introduce particle-hole operators
t̂as�q� �

P
k C

y
kstaCk1qs , �a � 0, 1, 2, 3�, where t0 �

I. The staggered charge/spin density wave (CDW)/
(SDW) order parameters are given by t̂1"�0� 6 t̂1#�0�,
while the dimerization D � t̂2"�0� 1 t̂2#�0�. A generic
interaction compatible with the symmetry of (1) can be
written as
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X
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The coupling constants la are related to the backward
(g1), forward (g2), and umklapp (g3) scattering ampli-
tudes as follows [10]: l0 � 2l3 � g2, l1 � g1 1 g3,
and l2 � g1 2 g3. In the special case of (1), g1 � g2 �
g3 � Ua0 
 g0, and the t̂2-t̂2 term vanishes. Therefore,
in any mean-field treatment of the original Hamiltonian,
only variational states with finite average values of t̂1s�0�,
i.e., the CDW and SDW densities, can be explored.
However, renormalization of the coupling constants tak-
ing place in the energy range max�D, mc� , j´j ø t en-
hances g3 and g2 but suppresses g1 [10]. This implies the
generation of an effective coupling l2 which may lead to
the appearance of a finite average value of t̂2�0�.

To understand which of the two competing instabilities,
SDW vs D , develops first upon increasing U in the
BI phase, we consider singularities of the dynamical
2015
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susceptibilities xa�v, 0� �a � SDW,D �, associated with
triplet and singlet excitonic modes in the t̂1 and t̂2
channels, respectively. In the noninteracting case, the
susceptibilities are

x0
a�v, 0� � �1�2pyF� �ln�2t�D� 1 Qa�v�� .

The functions Qa�v� are given by QD � u tanu,
QSDW � 2�u�2� sin2u, where sinu � v�2D. Vertex
corrections to x0

a�v, 0� can be included by separating
in all diagrams the low-energy parts of the particle-hole
loops, Qa�v�, which are connected by the leading loga-
rithmic parquet vertices Ga�j� emerging upon integrating
out the higher-energy region D , j´j ø t and depending
on the logarithmic parameter j � ln�t�D�. The excitonic
poles are then determined by the equations

1 2 �1�2pyF�Ga�j�Qa�v� � 0 ,

where GD �j� � g2�j� 2 2g1�j� 1 g3�j�, GSDW �j� �
g2�j� 1 g3�j� [explicit expressions for renormalized cou-
plings gi�j� can be found in Ref. [10] ]. The above
equation has no solution in the SDW case, implying
that, as long as the effective interaction is weak enough
(j , j0 � pyF�2g), the triplet exciton is not formed
at all. On the other hand, we find that the singlet exci-
ton appears at an infinitesimal interaction strength; more-
over, it becomes soft on approaching the strong-coupling
region j � j0, where the excitonic gap is very small:
v � D�j0 2 j�1�2. Such softening of the singlet ex-
citonic mode unambiguously indicates that interaction
drives the BI phase to the SDI phase via a charge transi-
tion at which the spin degrees of freedom do not undergo
qualitative changes.

With the mechanism of the spin transition already
discussed, it becomes clear that the two transitions are of
an entirely different physical nature. We can safely state
that Uc1 , Uc2 implying that the SDI phase occupies a
finite range of U. Namely, we find that Uc2�Uc1 2 1 �
const� ln�t�D�, where the positive constant in the right-
hand side is of the order of 1, once the leading logarithmic
accuracy is adopted. Next-to-leading corrections may
change the value of this constant but not its sign.

However, separation between Uc1 and Uc2 becomes
significantly stronger when the electron-phonon interac-
tion, always present in realistic situations, is taken into
account. Assume for simplicity that the frequency of
the zone-center optical phonons, v0, is the largest energy
scale in the problem. Such quantum phonons will mediate
an instantaneous interaction between the electrons which
adds to the Hubbard repulsion and leads to a renormal-
ization of the “bare” coupling constants: g3 ! g3 1 z ,
g1 ! g1 2 z , where z � l2�v0. On increasing z , the
transition points Uc1 and Uc2 will start moving apart, and
if the electron-phonon coupling is large enough (z . g1),
a finite spin gap will be always present, and the model
will display only BI and SDI phases. This situation is re-
alized in mixed-stack organic compounds [11].
2016
In what follows, we shall focus on the nature of excita-
tions in the SDI phase and a nonperturbative description
of the charge transition to the BI phase. The Hamiltonian
Heff given by (3)–(5) will be regarded as a phenomeno-
logical Landau-Ginzburg energy functional, in the sense
that all the couplings are effective ones obtained by inte-
grating out high-energy degrees of freedom. The saddle
points of the effective potential in Heff are determined by
the equations (here wc,s �

p
2p Fc,s)

coswc�4g̃3 sinwc 2 2pD̃ cosws� � 0 , (9)

sinws

£
2pD̃ sinwc 2 4g̃1 cosws

§
� 0 , (10)

supplemented by stability conditions. At g̃3 , pD̃�2 ,p
g̃3g̃1 there are two sets of minima (defined modulo

2p) located at ws � 0, wc � p�2, and ws � p ,
wc � 2p�2. These sets characterize the BI phase.
Indeed, the vacuum-vacuum transitions, Dws�c� � 6p ,
describe stable topological excitations carrying the charge
Q � Dwc�p � 61 and spin Sz � Dws�2p � 61�2
and therefore coinciding with “massive” single-fermion
excitations of the BI. The situation changes at
g̃3 . pD̃�2 where each minimum in the charge sector
splits into two degenerate minima and thus transforms
to a local double-well potential. The new minima are
given by ws � 0, wc � f0, p 2 f0, and ws � p ,
wc � 2f0, 2p 1 f0, where f0 � arcsin�pD̃�2g̃3�.
They describe the SDI phase where the dimerization
operator D �x� � coswc�x� cosws�x� acquires a finite
expectation value. Notice that the location of the minima
in the spin sector, and hence the spin quantum numbers
of the topological excitations, are the same as in the
BI phase (g̃3 , pD̃�2). Therefore the spin part of the
spectrum formed in the SDI phase smoothly transforms
to that of the BI phase. The transition at g̃3 � pD̃�2
mainly involves the charge degrees of freedom which
undergo dramatic changes. In particular, the charge
quantum numbers become fractional, depending on f0
[12]. The Z2 degeneracy of the SDI state implies the
existence of topological kinks carrying the spin S � 1�2
and charge Q � 62w0�2. These massive excitations,
described by interset vacuum-vacuum transition, inter-
polate between the neutral spinons of the MI phase and
single-fermion excitations of the BI phase. However, the
double-well local structure of the effective potential in
the charge sector gives rise to singlet kink excitations as
well, which lose their mass and charge Q � 1 2 2f0�p

at g̃3 � pD̃�2 and transform to the neutral excitons of
the BI phase. Precisely at g̃3 � pD̃�2, the effective po-
tential becomes �w4

c , which is well known for describing
the Ising universality class.

The Ising scenario at U � Uc1 can be more rigorously
proven by studying the charge degrees of freedom with
the spin bosonic field locked at Fs � 0 or

p
p�2. Such

an approach will certainly be valid in a small vicinity of
Uc1 where the charge sector is described by a double
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FIG. 1. Phase diagram of (1) as a function of U at fixed D
and t. Dc�s� stands for the charge (spin) gap.

sine-Gordon (DSG) Hamiltonian

Ĥc�x� �
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We stress once more that all the parameters are purely
phenomenological, and part of the interaction has been
absorbed in the rescaling parameter Kc , 1. A quantum
phase transition of an Ising type in the DSG model
was recently discovered by Delfino and Mussardo [13].
Hamiltonian (11) can be mapped onto two coupled 2D
Ising models, or equivalently, two coupled quantum Ising
chains in a transverse magnetic field. One of the two
chains always remains off critical, while the other one can
pass through a critical point by fine-tuning the parameters
of the model. The details will be presented elsewhere
[14]. Here we just quote our main findings, which can
be easily understood once the Ising scenario is assumed.
The most relevant perturbation at an Ising transition
is the magnetic field h, which, in the ordered phase,
selects one of the two equivalent vacua. By analogy,
the role of h is played in our case by the explicit
dimerization j, Eq. (2). The dimerization operator D ,
which also plays the role of the charge polarization
operator, is therefore proportional to the order parameter
s of the quantum critical Ising model. The Ising mapping
allows us to identify the electron current operator, j �
≠ts, and the average electron charge operator r �
2≠xs. This is consistent with the general relations
r � 2≠xD and ≠tr 1 ≠xj � 0 (continuity) valid for
insulators. The real part of ac conductivity is related to
the imaginary part of polarizability x�v�, the latter being
proportional to the dynamical spin susceptibility of the
Ising model: s�v� � 2v�mx�v�. From known results
on the correlation functions at the Ising transition we
conclude that �mx�v� � v27�4, implying that at zero
temperature the optical conductivity, s�v� � v23�4 (no
Drude peak), is “semimetallic.” For T fi 0, this behavior
changes to s�v� � v2�T11�4 at v ø T , and crosses
over onto the quantum-critical asymptotics (v23�4) at
v ¿ T .
Our findings are summarized in Fig. 1, where the phase
diagram is shown at fixed D and t as a function of U.
Between the BI (U , Uc1) and MI (U . Uc2) phases
there exists a spontaneously dimerized phase even in the
absence of an explicit electron-phonon interaction [15].
The transition from the MI to the spontaneously dimerized
insulator is of the KT type, accompanied by the opening
of the spin gap. The transition from the SDI to the BI
has been shown to be of the Ising type, with the singlet
exciton binding energy vanishing at this single point [15].
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