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One-Dimensional Electron Liquid in an Antiferromagnetic Environment:
Spin Gap from Magnetic Correlations
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We study a one-dimensional electron liquid coupled by a weak spin-exchange interaction to an
antiferromagnetic spin-S ladder with n legs. A perturbative renormalization group analysis in the
semiclassical limit reveals the opening of a spin gap, driven by the local magnetic correlations on the
ladder. The effect, which we argue is present forany gapful ladderor gapless ladder withnS ¿ 1,
is enhanced by the repulsive interaction among the conduction electrons but is insensitive to the sign
of the spin exchange interaction with the ladder. Possible implications for the striped phases of the
cuprates are discussed.

PACS numbers: 75.20.Hr, 74.20.Mn
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The coexistence of conducting electrons and localiz
spins remains one of the most challenging problems
condensed matter physics, as evidenced by the enorm
effort put into the study of, for example, the Kondo lattic
or doped antiferromagnets [1]. The recently discover
striped phases in La22xSrxCuO4 and various other high-
Tc cuprates [2] add a new twist to this class of problem
“Stripes” is the name for spontaneously formed doma
walls across which the two-dimensional antiferromagne
order in these materials changes sign, and along which
doped holes are concentrated. The stripes are slowly fl
tuating structures and may locally be modeled as me
lic wires—in fact, Luttinger liquids [3]—embedded in an
antiferromagnetic environment. As suggested by Eme
Kivelson, and Zachar [4] pair tunneling of holes betwee
the stripes and the environment may produce an electro
spin gap favoring either a charge density wave or s
perconducting correlations. Josephson coupling betw
stripes is expected to suppress the charge density w
paving the way for superconductivity. Suggestions ha
also been made that a spin gap in the striped phase
be identified with the “normal-state” pseudogap observ
in the underdoped cuprates [5].

In this Letter, we also consider a one-dimensional ele
tron liquid in an antiferromagnetic Mott insulating env
ronment, and here focus on the role of the spin-exchan
interaction between itinerant and localized electrons. T
problem belongs to the more general class ofLuttinger
liquids in active environments [4,6], a topic of importance
not only to the striped phases, but also to, e.g., nanot
[7] and Kondo chain physics [8]. It is important to rea
ize that in the present case spin and momentum con
vation severely restrict the possible relevant interactio
between the electron liquid and its environment. In pa
ticular, since the Fermi momentum of the Luttinger liqu
(away from half filling) is incommensurate with that o
any low-energy excitation of the Mott insulator, we ca
neglect as irrelevant terms which transfer single holes
the insulator. Pair hopping is still allowed and is favore
when the spins in the environment have a tendency
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form singlets, as may be the case when there is a la
preexisting spin gap in the environment [4]. In addition
however, a spin-exchange interaction is always prese
and is expected to become dominant for smaller gaps, c
relating with a smaller density of local spin singlets. Th
is the case we consider here.

Treating the localized spins semiclassically, we exploi
path integral formalism to construct a low-energy effectiv
action with a companion set of perturbative renormaliz
tion group (RG) equations. Their solution reveals th
opening of an electronic spin gap on the stripes, driv
by the magnetic correlations in the environment. Rath
strikingly, the effect is enhanced by the repulsive electro
electron interaction, but is insensitive to whether th
coupling to the environment is ferromagnetic or ant
ferromagnetic. Although our approach allows for
fully controlled calculation only for large values of the
localized spins or—as we shall see—for sufficiently wid
antiferromagnetic domains between the stripes, we sh
argue that our results are robust in the limit of narro
spin-12 domains, at least in the case when the environme
is noncritical.

As a lattice model, we take a Hubbard chain (represe
ing a stripe) coupled to the first leg of a neighboring sp
ladder (representing the environment) by a spin-exchan
interaction:

H �
NX
r�1

"
2t�cyr11,scr ,s 1 H.c.� 1 Unr ,snr ,2s

1 JKc
y
r ,sssmcr ,m ? Sr ,1 (1)

1 JH

√nlegX
j�1

Sr ,j ? Sr11,j 1 Sr ,j ? Sr ,j11

!#
,

SN11,j � Sr ,nleg11 � 0, JH . 0 .

Here,cr ,s is a conduction electron operator at siter with
spin indexs, nr ,s � cyr ,scr ,s is a number operator, and
Sr ,j is the operator for the localized spin at the site wit
coordinatesr along legs andj along rungs. The model
can be extended to include a coupling to antiphase ladd
on either side of the stripe. As long as these ladde
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are correlated and the stripe is away from half filling,
this will change only the magnitude of the couplings in
the effective theory— to be derived below—but will not
result in any qualitative changes [9].

The model in (1) can be taken as an effective model of a
local stripe phase in the cuprates, valid on length scales and
time scales set by the fluctuation dynamics of the stripes
(which is expected to be much slower than the dynamics
of charge carriers along the stripe). For the purpose of
exploring whether a spin gap opens up or not, we can count
on the stripe as being metallic, as assumed in (1), since
for weak disorder (induced, e.g., by the dopant potentials)
localization effects set in at length scales much larger than
any relevant spin gap length scale. We should point out
that, since our model has the presence of stripes already
built into it, the model cannot describe the instability that
triggers the striped phases. For this, one must turn to other
approaches, as in [10].

Given the Hamiltonian in (1), its partition function
can be expressed as a Euclidean path integral by using
coherent spin states in the semiclassical (large-S) limit of
the localized spins, i.e., taking Sr ,j ! SVr ,j , where V is
a vector of unit length. This gives

Z �
Z

D �V�D �c�D �cy�e2S �V,c,cy�, (2)

with action

S �
Z
dt iS

X
r ,j

FBerry�Vr ,j�t�� 1
X
r
cyr ,s≠tcr ,s

1 H�cy, c,SV� . (3)

The first term in (3) is a sum over Berry phases,
coming from the overlap of the coherent spin states:
200
FBerry�Vr ,j�t�� �
R1

0 duVr ,j�u, t� ? �≠uVr ,j�u, t� 3

≠tVr ,j�u, t��, where Vr ,j�u � 1, t� � Vr ,j�t�, Vr ,j�u �
0, t� � const, with u a dummy variable. The Hamil-
tonian term H�cy, c,SV� in (3) acts at time slice t and
is obtained from (1) by substituting electron and spin
operators by corresponding Grassmann fields �cy, c�
and classical vectors SV, respectively. For the purpose
of formulating a low-energy theory, we linearize the
electron spectrum close to the Fermi points 6kF , as-
suming that U ø eF � 2t�1 2 cosakF�, and set cr ,s �p
a�2p �e2ikFarcLs�ar� 1 eikFarcRs�ar��, where a is

the lattice spacing, ne is the electron density, kF � nep�
2a, and cL�Rs are the left / right moving chiral fields.

We expect that short-range antiferromagnetic correla-
tions are present on the ladder also at the quantum level,
implying that the partition function at low energies is
dominated by paths with

Vr ,j � ��21�r1j
p

1 2 ���2
r ,j�S

2 nr 1 ���r ,j�S�� , (4)

where nr ? ���r ,j � 0 and jnj � jVj � 1. Here, n is the
local Néel-order parameter field, while ����S represents
small fluctuations of the local magnetization [11]. For
this to be a viable description of the ladder, we require
that the coupling to the conduction electrons is small, i.e.,
jJK j ø JH , and also assume that the antiferromagnetic
correlation length along the legs is much greater than the
width of the ladder, allowing for n to be taken constant
along the rungs [12].

We first consider the case of free electrons �U � 0�,
away from half-filling �ne fi 1�. Taking the continuum
limit of (3) and neglecting terms of higher than quadratic
order in ��� and ≠mn, one obtains the action
S �
Z
dx dt

"
2piS

X
j

�21�j
√

1
4p

n ? �≠tn 3 ≠xn�

!
2

i
a

�n 3 ≠tn� ?
X
j

���j 1
1

2p
c̄�g0≠t 1 g1yF≠x�c

1
JK
p

�JL 1 JR� ? ���1 1
aJH

2
nlegS

2�≠xn�2 1
JH
a

X
j

√
5
2

���2
j 1

1
2

���2
j11 1 ���j ? ���j11

!#
, (5)
with spin currents J L

R
�: 1

2c
y
L

R
s
ssmc L

R
m :, c �

�cL, cR�T a Dirac fermion with velocity yF � 2at sinakF ,
and with g0 � sx , g1 � sy , c̄ � cyg0. The Gaussian
integral over ��� in the partition function of (5) can be carried
out by means of the substitution ���0i � ���i 1 L21

ij vj , with
Lij � JHdij�6 2 di1 2 dinleg� 1 JHdij61 and vj �
2i�n 3 ≠tn� 1 dj1
JKa
p J�, where we define J� � J 2

�J ? n�n with J � JL 1 JR . We have here used the
identity J ? ��� � �J 2 �J ? n�n� ? ��� to preserve the
constraint n�x�����j�x� in the substitution ��� ! ���0, an
observation crucial to the subsequent analysis of the
problem.

This gives S � SNLs 1 SDirac 1 SI , where
SNLs �
1

2g

Z
dx dt

√
1
c

�≠tn�2 1 c�≠xn�2

!
1 2piS

X
j

�21�j
1

4p

Z
dx dt n ? �≠tn 3 ≠xn� , (6)

SDirac �
1

2p

Z
dx dt c̄�g0≠t 1 g1yF≠x�c , (7)

SI �
1

2p

Z
dx dt

√
JKC1i�n 3 ≠tn� ? J� 2

aJ2
K

p
C2J� ? J�

!
. (8)
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Here, SNLs is a nonlinear s model describing the ladder,
with coupling g21 � S�JHnleg

P
ij L

21
ij �1�2 and veloc-

ity c � aS�JHnleg��
P
ij L

21
ij ��1�2, and with the topologi-

cal term 2piS
P
ij�21�j 1

4p

R
dx dt n ? �≠tn 3 ≠xn� �

2iuQ, where u � 2pS
Pnleg

j�1�21�j is the topological
angle, and Q [ � is the winding number of the map-
ping n : S2 ! S2. Note that the topological term is ab-
sent for even-leg ladders and also effectively for odd-leg
ladders with integer spin, while for odd-leg ladders with
half-odd-integer spin it is present with u effectively equal
to p [13]. We shall return to the implications of this
below. The Dirac action SDirac in (7) represents the elec-
trons on the stripe, coupled to the ladder by SI in (8), with
C1 �

P
i L

21
i1 and C2 � L21

11 .
What is the effect of the interaction SI? In particular,

we wish to explore whether it may open up a spin gap
for the electrons on the stripe. For this purpose, we
shall treat the interaction SI by means of a perturbative
RG approach, using a mean-field formulation of the local
Néel-order parameter field n. Specifically, we will derive
an effective action for the spin sector which is valid over
distances over which the spin ladder is ordered. Within
the limits of validity of this action, we then integrate out
the short wavelength degrees of freedom to obtain its RG
flow, allowing us to address the question above.

Thus, given a patch in Euclidean space-time supporting
local Néel order, we take the n field to be in a fixed
(but arbitrary) direction ñ. Introducing a local coordinate
system �x, y, z� with ẑ in the direction of ñ, and using
the operator identity JzL

R

JzL
R

� 1
3J L

R
? J L

R
, we obtain from

(8)—dropping the rapidly fluctuating first term of SI
[14]—an effective interaction S̃I valid up to length scales
of the size of the ordered region,

S̃I � 2
gJ
p

Z
dx dt

√
1
3

�J2
L 1 J2

R� 1 JxLJ
x
R 1 J

y
LJ

y
R

!
,

(9)

with coupling gJ � aJ2
KC2�p � aJ2

K�4pJH . Note that
the spin anisotropy of the induced interaction in (9) is a
direct consequence of the local Néel order of the n field.
Also note that the coupling gJ is quadratic in JK and,
hence, the same for ferromagnetic and antiferromagnetic
spin exchange between the stripe and the environment.

Bosonizing the Dirac action (7), i.e., splitting it into a
charge boson and a (level k � 1) Wess-Zumino-Witten
SWZW,k�1 model for the spin degrees of freedom, we
absorb the quadratic terms of (9) into SWZW,k�1 via a
Sugawara construction, thus obtaining an effective action
S̃spin for the spin sector of the conduction electrons:

S̃spin � SWZW,k�1 1 lo

Z
d2x�JxLJ

x
R 1 J

y
LJ

y
R� , (10)

where x0 � yst, ys � yF 2 2gJ , and with dimensionless
coupling l0 � 2gJ�pys. Since jl0j ø 1, we can use
standard perturbative RG techniques to analyze S̃spin, and
at the one-loop level we arrive at the scaling equations,
dli

d lnL
� 2pljlk , k fi j fi i , (11)

for the couplings li of the operators JiLJ
i
R , where L

is a short-distance cutoff. Using (11) to solve for the
RG flow, we obtain the trajectories l2 2 �lz�2 � l

2
0

with l � lx � ly , and thus the scaling equation for l:
dl�d lnL � 2pl�l2 2 l

2
0�1�2, which upon integration

gives arctan�
p

�l�l0�2 2 1 � � 2pjl0j lnL�a. Hence,
jlj grows under renormalization and at the length scale
where jlj � O �1� the perturbative treatment breaks down.
This scale—where the perturbation is of the same order
of magnitude as the fixed point action and renders the
theory noncritical—defines the correlation length js of
the electron spin sector. Using jl�js�j � O �1� ¿ jl0j in
the scaling equation for l, we thus obtain js � ae1�4jl0j,
with an associated spin gap

D �
ys

a
e21�4jl0j. (12)

The formation of a gap in this model is confirmed by
the fact that (10) corresponds to a fermionic low-energy
formulation of a spin- 1

2 XXZ chain [with a U�1� 3 Z2
symmetry] [15]. The growing coupling constant scenario
corresponds to an Ising anisotropy Jz . 1 of the XXZ
chain, for which the latter is known to have a Néel ordered
ground state with a broken Z2 symmetry and a mass gap.

The procedure leading up to (12) requires that the
environment exhibits Néel order over length scales ex-
ceeding js. Here, we have to distinguish between spin
ladders described by (6) with a vanishing topological
term (even-leg and odd-leg ladders with integer spin)
and those where the topological term is present with
u � p (odd-leg ladders with half-odd-integer spin). The
behavior of the nonlinear s model without topological
term is well established [15]; it has a finite mass gap
and is ordered over distances given by the corresponding
correlation length js . In contrast, the behavior when
u � p is not rigorously known, although the consensus
is that the topological term drives a crossover to the
critical k � 1 WZW model at a length scale also set
by js [16]. However, in the weak coupling regime,
the topological term is effectively inactive [17], and as
a consequence there is no distinction between gapless
and gapful ladders on length scales shorter than js . It
follows that the condition js , js validating our analysis
is the same for gapless and gapful ladders. Evaluating
g, we find g21 � 0.36Snleg, which in the weak-coupling
regime with js � age2p�g implies the consistency
condition

0.3Snleg .
JHt

J2
K

¿ 1 . (13)

While (13) shows that our perturbative RG calculation
is well-controlled only for large spins or wide ladders, it
is important to emphasize that the interaction SI in (8) is
well-defined for any values of S or nleg. As the symmetry
of SI does not change when tuning the values of S or nleg,
we expect that the result for the spin gap in (12) is analytic
201
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in these parameters with corrections that remain subleading
as long as no topological effects intervene. On the other
hand, when u � p , a violation of (13) may change the
physics, as suggested by bosonization and density matrix
renormalization group results for the Heisenberg-Kondo
lattice model �nleg � 1, S � 1�2� [8,18]: No gap is found
for ferromagnetic coupling [19], while for antiferromag-
netic coupling the combined gap for itinerant and localized
electrons scales as � exp�2const 3 �pJH�2 1 yF�JK ��.
It might be appropriate to add a note concerning the
prospect that nonperturbative effects at length scales larger
than js could possibly carry over to the electron liquid.
Although we cannot rigorously exclude it, it seems im-
probable considering the fact that the spin sector of the
electron liquid develops a mass at a length scale which is
shorter than and independent of js , and as such the mass
is already well-established at the scale where nonperturba-
tive effects from the ladder may come into play.

Let us now include the electron-electron interaction in
(1) �U fi 0�. At the level of the effective action for the
electron spin sector, this changes S̃spin in (10) into

S̃spin � SWZW,k�1 1
Z
d2x l0�JxLJ

x
R 1 J

y
LJ

y
R�

1 lz0J
z
LJ

z
R , (14)

with renormalized velocity ys � yF 2 2gJ 2 gU and
couplings l0 � 2�gJ 1 gU��pys, l

z
0 � 2gU�pys,

where gU � aU�p . Carrying out the RG analysis as
above, we obtain the spin gap

D �
ys

a
exp

√
2

p�2 2 arctan�lz0�dl�
2pdl

!
, (15)

where dl �
p

l2
0 2 �lz0�2. Thus, as is shown in Fig. 1, a

repulsive electron-electron interaction �U . 0� produces
a larger gap, while for U , 0 the outcome depends on
the ratio between gU and gJ . An interpretation of the sur-
prising scenario of a decrease of the gap for U , 0 due
to the environment is that the competition between the
attractive interaction, which enhances on-site singlet pair-
ing, and the Ising anisotropy (discussed above), which en-
hances local Néel order, frustrates the system and, hence,
reduces the gap. It should, however, be noted that the
actual vanishing of the gap at gU�gJ � 21 cannot be rig-
orously concluded from our model as the self-consistency
condition js , js in this case requires Snleg ! `.

FIG. 1. The spin gap D as a function of gU ; the solid line is
for gJ � yF�5 and the dashed line for gJ � 0.
202
In summary, we have shown that a one-dimensional
electron liquid weakly coupled by a spin-exchange inter-
action to a spin ladder with Snleg ¿ 1 develops a spin
gap. The gap exhibits a strong dependence on the sign
and magnitude of the itinerant electron-electron interac-
tion, but is insensitive to whether the coupling to the lad-
der is ferromagnetic or antiferromagnetic. A symmetry
argument implies that these results hold for any gapful
ladder or gapless ladder with Snleg ¿ 1. Applied to the
striped phases seen in the cuprates, this may suggest that
the local antiferromagnetic correlations in the insulating
domains may conspire with the electron correlations on
the stripes to produce a sizable spin gap.
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