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One-Dimensional Electron Liquid in an Antiferromagnetic Environment:
Spin Gap from M agnetic Correlations
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We study a one-dimensional electron liquid coupled by a weak spin-exchange interaction to an
antiferromagnetic spid- ladder with n legs. A perturbative renormalization group analysis in the
semiclassical limit reveals the opening of a spin gap, driven by the local magnetic correlations on the
ladder. The effect, which we argue is present day gapful ladderor gapless ladder witS > 1,
is enhanced by the repulsive interaction among the conduction electrons but is insensitive to the sign
of the spin exchange interaction with the ladder. Possible implications for the striped phases of the
cuprates are discussed.

PACS numbers: 75.20.Hr, 74.20.Mn

The coexistence of conducting electrons and localizedorm singlets, as may be the case when there is a large
spins remains one of the most challenging problems opreexisting spin gap in the environment [4]. In addition,
condensed matter physics, as evidenced by the enormobswever, a spin-exchange interaction is always present,
effort put into the study of, for example, the Kondo lattice and is expected to become dominant for smaller gaps, cor-
or doped antiferromagnets [1]. The recently discoveredelating with a smaller density of local spin singlets. This
striped phases in La,Sr,CuQ, and various other high- is the case we consider here.

T. cuprates [2] add a new twist to this class of problems. Treating the localized spins semiclassically, we exploit a
“Stripes” is the name for spontaneously formed domairpath integral formalism to construct a low-energy effective
walls across which the two-dimensional antiferromagnetiaction with a companion set of perturbative renormaliza-
order in these materials changes sign, and along which thten group (RG) equations. Their solution reveals the
doped holes are concentrated. The stripes are slowly flu@pening of an electronic spin gap on the stripes, driven
tuating structures and may locally be modeled as metaby the magnetic correlations in the environment. Rather
lic wires—in fact, Luttinger liquids [3]—embedded in an strikingly, the effect is enhanced by the repulsive electron-
antiferromagnetic environment. As suggested by Emeryelectron interaction, but is insensitive to whether the
Kivelson, and Zachar [4] pair tunneling of holes betweencoupling to the environment is ferromagnetic or anti-
the stripes and the environment may produce an electronferromagnetic.  Although our approach allows for a
spin gap favoring either a charge density wave or sufully controlled calculation only for large values of the
perconducting correlations. Josephson coupling betwedncalized spins or—as we shall see—for sufficiently wide
stripes is expected to suppress the charge density wavantiferromagnetic domains between the stripes, we shall
paving the way for superconductivity. Suggestions havergue that our results are robust in the limit of narrow
also been made that a spin gap in the striped phase ma;pin-% domains, at least in the case when the environment
be identified with the “normal-state” pseudogap observeds noncritical.

in the underdoped cuprates [5]. As a lattice model, we take a Hubbard chain (represent-

In this Letter, we also consider a one-dimensional elecing a stripe) coupled to the first leg of a neighboring spin
tron liquid in an antiferromagnetic Mott insulating envi- ladder (representing the environment) by a spin-exchange
ronment, and here focus on the role of the spin-exchangateraction:

interaction between itinerant and localized electrons. This N

problem belongs to the more general class_oftinger H = Z {—t(cfﬂ,gc,,,, + H.c) + Un, oy —»

liquids in active environments [4,6], a topic of importance r=1

not only to the striped phases, but also to, e.g., nanotube + J,(c;f,go-wc,,u - S ()
[7] and Kondo chain physics [8]. It is important to real- Mg

ize that in the present case spin and momentum conser- + JH(Z S Sr+1j TSk S,,.,-H)},
vation severely restrict the possible relevant interactions j=1

between the electron liquid and its environment. In par- SN+1j = Srag+1 = 0, Ju > 0.

ticular, since the Fermi momentum of the Luttinger liquid Here, ¢, , is a conduction electron operator at sitevith
(away from half filling) is incommensurate with that of spin indexo, n,, = c}‘,gcr,g is a number operator, and
any low-energy excitation of the Mott insulator, we cans, ; is the operator for the localized spin at the site with
neglect as irrelevant terms which transfer single holes t@oordinates- along legs and along rungs. The model
the insulator. Pair hopping is still allowed and is favoredcan be extended to include a coupling to antiphase ladders
when the spins in the environment have a tendency ton either side of the stripe. As long as these ladders
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are correlated and the stripe is away from half filling,  ®pey[Q, ;(7)] = fé du®d, j(u,7) - [9,2,,(u,7) X
this will change only the magnitude of the couplingsin ~ 9.Q, ;(u,7)],whereQ, ;(u = 1,7) = Q, ;(1), Q, j(u =
the effective theory—to be derived below—but will not  0,7) = const, with u a dummy variable. The Hamil-
result in any qualitative changes [9]. tonian term H(ct, ¢, SQ) in (3) acts at time slice 7 and
The model in (1) can be taken as an effectivemodel of a s obtained from (1) by substituting electron and spin
local stripe phasein the cuprates, valid on length scalesand ~ operators by corresponding Grassmann fields (ct, ¢)
time scales set by the fluctuation dynamics of the stripes  and classical vectors SQ, respectively. For the purpose
(which is expected to be much slower than the dynamics  of formulating a low-energy theory, we linearize the
of charge carriers along the stripe). For the purpose of  electron spectrum close to the Fermi points =kr, as
exploring whether aspin gap opensup or not, wecancount  suming that U < e = 2¢(1 — cosakg), and set ¢, , =
on the stripe as being metallic, as assumed in (1), since  \/a/27 [e *r y; ,(ar) + e*r9 Ypy(ar)], where a is
for weak disorder (induced, e.g., by the dopant potentials)  the lattice spacing, . is the electron density, ky = n.m/
localization effects set in at length scales much larger than 24, and ¢, /&, are the l€ft/right moving chiral fields.
any relevant spin gap length scale. We should point out We expect that short-range antiferromagnetic correla-
that, since our model has the presence of stripes already  tions are present on the ladder also at the quantum level,
built into it, the model cannot describe the instability that implying that the partition function at low energies is
triggersthe striped phases. For this, one must turn to other dominated by paths with
approaches, asin [10].
Given the Hamiltonian in (1), its partition function Q. =[=1)"V1 —€,/%n, +¢€;/9], 4
can be expressed as a Euclidean path integral by using '
coherent spin states in the semiclassical (large-S) limit of ~ where n, - £, ; = 0 and |n| = || = 1. Here, n isthe
the localized spins, i.e., taking S, ; — S, j, where Q is  local Néel-order parameter field, while £/S represents

avector of unit length. This gives small fluctuations of the local magnetization [11]. For
_ e this to be a viable description of the ladder, we require
_ 1 S[Q,c,ct] . . ; -
z= f DIQ]D[e]D[c'Je ’ (2)  that the coupling to the conduction electrons is small, i.e.,
i ; |[Jx| < Jy, and aso assume that the antiferromagnetic
with action . .
correlation length along the legs is much greater than the
S = f d7iSY Ppery[Q, (D] + D ¢l d,¢,0 width of the ladder, allowing for n to be taken constant
rij r along the rungs [12].
+ H(ct,c,5Q). 3 We first consider the case of free electrons (U = 0),

away from half-filling (n, # 1). Taking the continuum
limit of (3) and neglecting terms of higher than quadratic
| order in € and 9,,n, one obtains the action

The first term in (3) is a sum over Berry phases,
coming from the overlap of the coherent spin states:

S 1 ] 1 -
S = f dxd7|:27TiSZ(—l)J<En - (0,0 X axn)> — é(n X d,n) * ; € + Ezp(yOaT + ylvpa )y

aly J 5 1
+ 7(JL + Jr) -1+ — > B g S2(0,m)% + ;H 2(2 6+ E‘e3+1 + € - €j+1):|, (5)

J

with spin  currents Jr =: 2«,0, oOouPlip s Y= —i(n X d,n) + 61-1]“7“JL, where we define J, = J —
(WL, pr)T aDlracfermlonW|thveIOC|ty vr = 2atsinakp, (J - m)n with J = J; + Jr. We have here used the
and with y* = 0%, y! = 7, ¢ = y1y°. TheGaussian identity J-€ =[J — (J - n)n] - € to preserve the
integral over € in the partition function of (5) can be carried constraint n(x)L€;(x) in the substitution € — ¢', an
out by means of the substitution €; = €; + L;;'@;, with ~ observation crucial to the subsequent analysis of the
Lij = Ju8;j(6 — 8yt — 8in,) + Judij=1 and e; =  problem.

This glveSS = SNL(r + SDirac + S], where

Snie = - f dx dT(l(aTnV + c(axn)z) +omis Y (-1 — fdx drn - (d.n X 9.1). ©)
2g c 7 41
Sbirac = L fdx dr ’2/(7067' + 'y]UFax)lﬂa (7)
2T
1 . aJK
S =— ded'f'(-]KC]l(n X an) - J, ——CoJ, - JL)- (8)
27 T
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Here, SnLo isanonlinear o model describing the ladder, dA’ _ ik . .
with coupling g~ = S(Jymes > Li;')'/? and veloc- dInL 2T, k#J#10, (11)

ity ¢ = aS(JHnleg/[ZUL_1 )12, and with the topologi-
ca term 277182,]( 1)/ 477 fdxdrn - (d;n X d,n) =
—ifQ, where 6 = 27753 ;= (~1) is the topological
angle, and Q € Z is the Wlndlng number of the map-
ping n : S> — S2. Note that the topological term is ab-
sent for even-leg ladders and aso effectively for odd-leg
ladders with integer spin, while for odd-leg ladders with
half-odd-integer spin it is present with 6 effectively equal
to 7 [13]. We shall return to the implications of this
below. The Dirac action Spj..c in (7) represents the elec-
trons on the stripe, coupled to the ladder by S; in (8), with
Ci=Y,Li'andC, = L}

What is the effect of the interaction S;? In particular,
we wish to explore whether it may open up a spin gap
for the electrons on the stripe. For this purpose, we
shall treat the interaction S; by means of a perturbative
RG approach, using a mean-field formulation of the local
Néel-order parameter field n. Specificaly, we will derive
an effective action for the spin sector which is valid over
distances over which the spin ladder is ordered. Within
the limits of validity of this action, we then integrate out
the short wavelength degrees of freedom to obtain its RG
flow, allowing us to address the question above.

Thus, given a patch in Euclidean space-time supporting
local Néel order, we take the n field to be in a fixed
(but arbitrary) direction 7i. Introducing alocal coordinate
system (x,y,z) with 2 in the direction of 7, and using
the operator identity JiJi = 3JL J:, we obtam from

(8)—dropping the rapi dry fluctuati ng first term of §;
[14] —an effective interaction S; valid up to length scales
of the size of the ordered region,

fd dT( JL+JR)+JLJR+JLJR>

(9)

with coupling g; = aJ#C»/m ~ aJ/4mJy. Note that
the spin anisotropy of the induced interaction in (9) is a
direct consequence of the local Néel order of the n field.
Also note that the coupling g; is quadratic in Jx and,
hence, the same for ferromagnetic and antiferromagnetic
spin exchange between the stripe and the environment.

Bosonizing the Dirac action (7), i.e., splitting it into a
charge boson and a (level &k = 1) Wess-Zumino-Witten
Swzw.x=1 model for the spin degrees of freedom, we
absorb the quadratic terms of (9) into Swzwi=1 via a
Sugawara construction, thus obtaining an effective action
Sspin for the spin sector of the conduction electrons:

Sepin = Swzwi=1 + A, f d*x(JiJ% + JiJx), (10)

wherex? = v,7, v, = vp — 2gs, and with dimensionless
coupling Ao = —g;/mv,. Since |Ag| < 1, we can use
standard perturbative RG techniques to analyze Sy, , and
at the one-loop level we arrive at the scaling equations,

for the couplings A’ of the operators J;Jr, Where L
is a short-distance cutoff. Using (11) to solve for the
RG flow, we obtain the trgjectories A2 — (A%)2 = A3
with A = A* = A”, and thus the scaling equation for A:
dA/dInL = 27 A(A2 — A3)'/2, which upon integration
gives arctan(+/(A/Ag)*> — 1) = 2m|AglInL/a. Hence,
[A] grows under renormalization and at the length scale
where|A| ~ O (1) the perturbative treatment breaks down.
This scale—where the perturbation is of the same order
of magnitude as the fixed point action and renders the
theory noncritical —defines the correlation length & of
the electron spin sector. Using [A(&)] ~ O (1) > |Ap| in
the scaling equation for A, we thus obtain &, = ae!/4l,
with an associated spin gap
A ~ 2
a
The formation of a gap in this model is confirmed by
the fact that (10) corresponds to a fermionic low-energy
formulation of a spin-3 XXZ chain [with a U(1) X Z,
symmetry] [15]. The growing coupling constant scenario
corresponds to an Ising anisotropy J, > 1 of the XXZ
chain, for which the latter is known to have a Néel ordered
ground state with a broken Z, symmetry and a mass gap.
The procedure leading up to (12) requires that the
environment exhibits Nédl order over length scales ex-
ceeding &;,. Here, we have to distinguish between spin
ladders described by (6) with a vanishing topological
term (even-leg and odd-leg ladders with integer spin)
and those where the topological term is present with
0 = 7 (odd-leg ladders with half-odd-integer spin). The
behavior of the nonlinear o model without topological
term is well established [15]; it has a finite mass gap
and is ordered over distances given by the corresponding
correlation length &,. In contrast, the behavior when
6 = ar is not rigorously known, athough the consensus
is that the topological term drives a crossover to the
critical k = 1 WZW model at a length scale also set
by £, [16]. However, in the weak coupling regime,
the topological term is effectively inactive [17], and as
a consequence there is no distinction between gapless
and gapful ladders on length scales shorter than &,. It
follows that the condition ¢, < &, validating our analysis
is the same for gapless and gapful ladders. Evaluating
g, wefind g~! =~ 0.365n¢,, Which in the weak-coupling
regime with &, ~ age?™/¢ implies the consistency
condition

—1/4|/\o| (12)

th > 1. (13

K

While (13) shows that our perturbative RG calculation
is well-controlled only for large spins or wide ladders, it
is important to emphasize that the interaction S; in (8) is
well-defined for any values of S or nje;. Asthe symmetry
of S; does not change when tuning the values of S or njcg,
we expect that the result for the spin gap in (12) isanalytic
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in these parameters with correctionsthat remain subleading
as long as no topological effects intervene. On the other
hand, when 6 = 7r, a violation of (13) may change the
physics, as suggested by bosonization and density matrix
renormalization group results for the Heisenberg-Kondo
|lattice model (nje; = 1,5 = 1/2)[8,18]: Nogapisfound
for ferromagnetic coupling [19], while for antiferromag-
netic coupling the combined gap for itinerant and localized
electrons scales as ~ exp[—const X (wJy/2 + vr/Jk)].
It might be appropriate to add a note concerning the
prospect that nonperturbative effects at length scaleslarger
than &, could possibly carry over to the electron liquid.
Although we cannot rigorously exclude it, it seems im-
probable considering the fact that the spin sector of the
electron liquid develops a mass at a length scale which is
shorter than and independent of &, and as such the mass
is aready well-established at the scale where nonperturba-
tive effects from the ladder may come into play.

Let us now include the electron-electron interaction in
(1) (U # 0). Atthe level of the effective action for the
electron spin sector, this changes Sqi, in (10) into

Sepin = Swzwi—1 + jdzx Mo T + JiJR)

+ AR, (14)
with renormalized velocity v, = vy — 2g; — gy and
couplings Ao = —(gs + gu)/7mvs, A5 = —gu/mvs,
where gy = aU/m. Carrying out the RG analysis as
above, we obtain the spin gap

_ v /2 — arctan(Ag/6A)
A= a eXp< 2m6A )’ (15)

where A = /A7 — (A§)*. Thus, asisshowninFig. 1, a
repulsive electron-electron interaction (U > 0) produces
a larger gap, while for U < 0 the outcome depends on
the ratio between gy and g;. An interpretation of the sur-
prising scenario of a decrease of the gap for U < 0 due
to the environment is that the competition between the
attractive interaction, which enhances on-site singlet pair-
ing, and the Ising anisotropy (discussed above), which en-
hances local Néel order, frustrates the system and, hence,
reduces the gap. It should, however, be noted that the
actual vanishing of thegap at g/ /g; = —1 cannot berig-
orously concluded from our model as the self-consistency
condition ¢, < &, in this case requires Snje, — .

A
vr/a

0 gu [ve/5]

-1 0

FIG. 1. The spin gap A as a function of gy ; the solid line is
for g; = vr/5 and the dashed line for g; = 0.
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In summary, we have shown that a one-dimensional
electron liquid weakly coupled by a spin-exchange inter-
action to a spin ladder with Sni,, > 1 develops a spin
gap. The gap exhibits a strong dependence on the sign
and magnitude of the itinerant electron-electron interac-
tion, but is insensitive to whether the coupling to the lad-
der is ferromagnetic or antiferromagnetic. A symmetry
argument implies that these results hold for any gapful
ladder or gapless ladder with Sni, > 1. Applied to the
striped phases seen in the cuprates, this may suggest that
the local antiferromagnetic correlations in the insulating
domains may conspire with the electron correlations on
the stripes to produce a sizable spin gap.
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