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The nonlinear final state of short-pulse lasers is examined using fully explicit particle-in-cell
simulations. A new long-wavelength hosing instability is found to be dominant after a few Rayleigh
lengths of propagation. This instability causes self-trapped electrons to be displaced off axis; we
find that ion motion is important at the highest densities studied. A possible explanation for this
instability is given based on a new variational principle analysis for short-pulse lasers propagating in
underdense plasma.
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Understanding the evolution of short-pulse high-
intensity lasers as they propagate through underdense
plasmas is essential for the successful development of
some plasma accelerator [1] and radiation schemes [2],
as well as for the fast ignitor fusion concept [3]. As
a result, there has been much research during the past
few years on short-pulse laser-plasma interactions. This
work has resulted in the identification of numerous self-
modulated processes, e.g., relativistic self-focusing [4],
ponderomotive blowout/cavitation, and Raman forward
scattering (RFS) instabilities [5,6], including envelope
self-modulation [7] and hosing [8,9]. While the work of
the past few years has led to the determination of the spa-
tiotemporal growth behavior of the above processes [5–9],
it is not clear which, if any, of these processes domi-
nate the evolution of the laser after these processes have
saturated.

In this Letter, we use the particle-in-cell (PIC) model
PEGASUS [10] to investigate the final nonlinear state
of short-pulse lasers after they have propagated through
a few Rayleigh lengths of plasma. We find over a
wide parameter space that the laser’s evolution follows
a common sequence of events. Furthermore, we find that
the final state of the laser is dominated by a new long-
wavelength hosing instability. We present a variational
principle analysis which provides the growth rate for
the well-known Raman-type hosing instability [8,9], but
which clearly identifies a long-wavelength hosing (LWH)
regime. At higher densities, we find ion motion to be
important. Finally, we illustrate through PIC simulations
that a consequence of LWH is for the self-trapped
electrons [11] to be displaced sideways.

We begin by presenting results from a PEGASUS simu-
lation in which a 600 fs�mm laser is focused with a
peak intensity of 5 3 1018 W�cm2 and a spot size of
20 mm onto the edge of a 1.4 3 1019 plasma slab. For
these parameters, v0�vp � 8.5, c�vp � 1.36 mm, the
Rayleigh length is xR � 1.2 mm, the peak normalized
vector potential a0 � eA0�mc2 � 2, and the ratio of laser
power to the critical power for relativistic self-focusing
0031-9007�99�83(10)�1978(4)$15.00
is [4] P�Pc � a2�kpw�2�32 � 27. In the simulation
1.2 3 107 electrons are followed on a 8192 3 256 x-y
Cartesian grid, while the ions are modeled as a smooth
neutralizing background. In Fig. 1, we show a sequence
of four color contour plots of the laser’s electric field with
a common color map. The four snapshots correspond
to when the laser initially impinges on the plasma and
to when the head of the laser has penetrated 0.57, 0.83,
and 1.82 mm into the plasma, respectively. After only
0.57 mm, i.e., 0.5xR , the head of the pulse has been
depleted from Raman scattering while the back of the
pulse has strongly self-focused. Details of this have
been reported elsewhere [10]. Eventually, as seen in
Fig. 1(c), the middle of the pulse is modulated from
Raman forward scattering, while the back of the pulse
expands and breaks up into two major filaments in which
both Raman forward scattering and conventional hosing
are occurring. However, later in time the pulse reaches
a “final” nonlinear state, where the back of the pulse
has refocused into a major filament (with two weaker
filaments surrounding it) whose average position in the y

FIG. 1 (color). A sequence of color contours of the laser’s
electric field in units of eE�mcv0 � a. The results are from
the same simulation.
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direction, ya, oscillates about the original laser axis. The
intensity contours closest to the front of the pulse alternate
above and below the original laser axis at a wavelength
of roughly twice the plasma wavelength, lp � 2pc�vp .
At positions farther back, ya is modulated at a longer
wavelength—between �5 10�lp . This hosing behavior at
wavelengths longer than lp , i.e., LWH, was not discussed
in the earlier theoretical analyses [8,9]. We emphasize
that the nonlinear evolution of the pulse is also influenced
by wave breaking and intense plasma heating [12,13].

In order to present a possible explanation for LWH,
we have developed a variational principle approach [14]
to describe the evolution of short-pulse lasers interacting
with their self-consistent wakes. The standard equations
for describing short-pulse lasers, which include the lowest
order relativistic corrections and assume a cold plasma,
are now well established to beµ
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where a is the normalized envelope for the com-
plex vector potential of the laser, eA�mc2 � �a�2� 3

exp�2iv0c� 1 c.c., f is the scalar potential of the
plasma, and c � t 2 x�c, t � x�c are convenient
variables for describing short-pulse lasers.

In the variational method a Lagrangian density L needs
to be found for which the Euler-Lagrange equations,
obtained by varying the action S �

R
dx� dc dt L ,

recover Eqs. (2). We find such an L to be
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where we have dropped the so-called dispersive terms,
i.e., those which give the mixed derivative term on
the left-hand side of Eq. (1a) [14]. Dropping the
dispersive terms leads to conservation of power, i.e.,
≠t

R
dx� jaj2 � 0. Anderson and Bonnedal [15] used

the variational approach to study only self-focusing,
which precludes any coupling to the plasma-wave wake
and hence their L depends upon a and a� only.

In the variational method, the complexity of the system
is reduced by substituting trial functions for a and f

into the action and performing the dx� integration. To
consider hosing, we assume a trial function for a of the
form a � Aeixeiky � y2ya�e22�� y2ya�21z2��w2

and for f of
the form f � Fe22�� y2yf�21z2��w2

, where the parameters
A, F, x , ky , ya, and yf are treated as functions of �c , t�.
The spot size w is taken to be a constant which we allow
to be the same for both a and f. The “centroid” variables
ya and yf measure the distance that the center of the
laser and its wake are displaced from the original axis.
Performing the dx� integration yields a reduced action
which is a functional of the variational parameters, i.e.,
S�A, x , F, a, ky , ya, yf� �

R
dc dt L . Varying S with

respect to x yields the power conservation law, ≠tP �
≠t�A2w2� � 0. Variations with respect to the functions
a and ky give the relationships a � 2�k0�4�≠t�w2� and
ky � 2k0≠tya, which can be substituted back into L to
yield the following reduced form of L , L �F, ya, yf�:
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Next, we linearize the Euler-Lagrange equations of L
about a solution in which ya0 � yf0 � 0 and F0 �
a2

0�4, giving the coupled equations for ya and yf:
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where P�Pc � A2�kpw�2�32, g is a geometric factor
which is 1 in cylindrical and 223�2 in slab geometry (used
in the simulations), and xR � k0w2�2 is the Rayleigh
length for the equilibrium laser profile. Note that these
equations are identical in form to those which describe
hosing of electron beams in the ion focused regime [16],
and they reproduce Eq. (5) in Ref. [8].

To discuss the growth rate and range of unstable wave-
lengths for hosing, we obtain a dispersion relation in
the lab frame by using the transformations ≠t ! ≠t 1

≠x and ≠c ! ≠t and substituting solutions of the form
exp�i�kx 2 vt�� into Eqs. (2), yielding ṽ2�ṽ 2 k̃�2 2

���ṽ2g�P�Pc��x̃2
R��� 2 �ṽ 2 k̃�2 � 0, where ṽ � v�vp ,

k̃ � k�kp , and x̃R � kpxR . In Fig. 2 we plot the growth
rate, i.e., the imaginary part of ṽ, vs real k̃ for P�Pc � 1,
i.e., a matched beam. This confirms that the peak growth
rate occurs for k̃ � 1, i.e., k � kp . This region of un-
stable growth is related to RFS, since a plasma wave is
being excited, and it is the regime discussed in Refs. [8]
and [9]. However, Fig. 2 also makes clear that the range

FIG. 2. The growth rate for hosing vs wave number for
x̃R � 256.
1979
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of unstable wave numbers extends continuously down
to k̃ � 0. This long-wavelength regime has heretofore
never been discussed. This regime could have been
obtained immediately if yf � ya was assumed in the
trial functions, which forces the centroids for f and a
to be in phase. In this limit, the plasma response f

is due almost entirely to relativistic mass corrections,
i.e., no plasma waves are excited. Therefore, this long-
wavelength regime is the whole beam analog to relativis-
tic self-phase modulation (RSPM) [17]. Long-wavelength
hosing is therefore physically distinct from conventional
hosing in the same way that RSPM is distinct from RFS.

The spatiotemporal growth for the conventional and
LWH regimes also differs. In the RFS regime, for
ṽ near kp the asymptotic spatiotemporal growth for
hosing is given by [8,9] ya or yf � exp��33�2�4� 3

�g�P�Pc�vpc�1�3�t�tR�2�3�. In the LWH regime,
where the inequality ≠

2
c ø v2

p holds, Eq. (2b) leads to
yf 	 ya��1 2 k2�. Substituting this relationship into
Eq. (2a) gives the spatiotemporal growth ya or yf �
exp��gP�Pc�1�2�k�kp�1�2�t�tR��. These expressions are
only valid under the ideal conditions of cold plasmas,
weakly relativistic pumps, and matched beams.

However, for current experimental parameters [18] the
conditions are far from ideal. Therefore, to accurately de-
termine the relative importance of the various regimes for
hosing with respect to other self-modulational processes,
we next present additional results from fully nonlinear
PIC simulations. In Fig. 3 we show color contour plots
of the laser’s electric field in units of eE��mcv0� 
 a
to illustrate the final nonlinear state of short-pulse lasers
from four different simulations. In each case, a 600 fs
laser pulse is focused to the edge of a uniform, preformed
plasma slab and the ions are a fixed neutralizing back-
ground. It is clear that for each simulation the final state
shows strong self-focusing and a dominant LWH com-
ponent. In Fig. 3(a), the laser’s electric field is shown
after a propagation distance of 1.8 mm � 6xR from a

FIG. 3 (color). Color contours of the laser’s electric field
in units of eE�mcv0 � a to show further evidence for
long-wavelength hosing. The results are from three different
simulations.
1980
simulation with parameters identical to those in Fig. 1,
except w0 � 10 mm instead of 20 mm. The dominant
hosing wavelength is similar to that in Fig. 1(d) but the
amplitude of the centroid seems larger and the instabil-
ity seems to have saturated. The spatiotemporal theory
predicts that the number of e-foldings for LWH scales
as 1�w0 for otherwise fixed parameters. This scaling is
consistent with the observation from Figs. 3(a) and 1(d)
that LWH is stronger when w0 � 10 mm compared to
when w0 � 20 mm. For the parameters of this simu-
lation, P�Pc � 6.75 and k�k0 � 10, the spatiotemporal
theory predicts �9 e-foldings of LWH growth, using the
focused value of the spot size �w � 5.6 mm� and the fact
that a2w is conserved in slab geometry.

The importance of LWH is further illustrated in
Fig. 3(b), which shows results from a simulation which
followed 108 particles on a 16384 3 1024 grid. The
plasma density was increased to 1020 cm23, i.e., v0�vp �
3.3, the laser intensity was lowered to 1.25 3

1018 W�cm2, i.e., a0 � 1, and the spot size was de-
creased to 6 mm, i.e., kpw0 � 11.3. Once again, after
only a few �480 mm � 4xR� Rayleigh lengths of propaga-
tion, the laser has strongly self-focused and a LWH mode
is dominant. The dominant wavelength is ��15 30�kp in
this case. Using the self-focused spot size, the spatiotem-
poral theory predicts �5 8 e-foldings of LWH.

In each simulation, there is little or no evidence of the
conventional (RFS) type of hosing, except for its presence
in the filaments of Fig. 1(c). However, the spatiotemporal
theory predicts many e-foldings of growth. Furthermore,
we have independently excited both conventional and
long-wavelength hosing in smaller test case simulations
by adding large fictitious hosing noise sources. Therefore,
the lack of RFS hosing is due to nonlinear effects. There
are several possible nonlinear explanations. Because of
its lower initial noise source, hosing generally occurs
after the beam has strongly self-modulated from RFS and
self-focusing. The occurrence of RFS divides the beam
into beamlets spaced at lp [this is seen in Figs. 1(b)
and 1(c)]. When hosing occurs, as seen in Fig. 1(d), it
appears to first displace one beamlet upward and the next
beamlet downward. This results in a hosing wavelength
of 2lp and, as the laser continues to evolve, even longer
wavelength modes dominate. Therefore, it appears that
hosing behaves differently when other instabilities such
as RFS have already grown to saturated levels. Another
explanation for the lack of RFS hosing is that the plasma
has been strongly heated by the time hosing occurs. RFS
hosing involves the excitation of a plasma wave, which
can be strongly damped at high temperatures, thereby
causing a suppression of RFS hosing.

With regard to the fast ignitor, where longer pulses
and higher densities are important (particularly for higher
densities), the frequency of the hosing, v � ck, can be
lower or on the same order as the ion plasma period,
vpi � 4pe2n0�mi . In this case, the ion dynamics cannot
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FIG. 4 (color). Color contour of electron density showing
self-trapped electrons exiting the plasma. The results are from
the same simulation as Fig. 3(a).

be ignored. In Fig. 3(c), we show results from an
identical simulation to that shown in Fig. 3(b), except
mobile hydrogenlike ions were used. The difference
between the two cases is dramatic. The ion motion
appears to stabilize the hosing (at least for the duration
of the simulation). On the other hand, we note that in a
simulation with 10 times higher intensity, i.e., a0 � 3, ion
dynamics did not stabilize hosing. Instead, it appeared
to cause the beam to self-focus and filament differently
with LWH still occurring in the individual filaments. The
wavelength for hosing was shorter than 2pc�vpi in this
case. So it appears that ion dynamics can stabilize hosing
when lhosing * 2pc�vpi . We also note that LWH can
occur for densities above quarter critical where RFS
cannot, because no plasma wave is excited. Preliminary
evidence of a LWH effect has already been observed in
simulations for this density regime [19]. Therefore LWH
could be important for the fast ignitor fusion concept.

In conclusion, we note that LWH might have important
consequences for the electron spectra generated in self-
trapped acceleration experiments [18]. This is illustrated
in Fig. 4, where a color contour plot of the plasma density
is shown as the self-trapped electrons exit into a vacuum
region. The results are from the simulation corresponding
to Fig. 3(a). The black line is drawn in the middle for
reference. The electrons are clearly exiting the plasma off
axis by a distance �10 mm, and their pattern corresponds
to the laser profile in Fig. 3(a). When the plasma slab was
shortened to 1 mm, no hosing was seen to occur, and the
accelerated electrons were not displaced [11].
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