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The damping of plasma oscillations in a weakly collisional plasma is revisited using a Fokker-Plan
collision operator. It is shown that the Case–Van Kampen continuous spectrum is eliminated in
limit of zero collision frequency and replaced by a discrete spectrum. The Landau-damped solutions
recovered in this limit, but as true eigenmodes of the weakly collisional system. For small but nonz
collision frequency, the spectra and eigenmodes are qualitatively different from their counterparts in
collisionless theory. These results are consistent with recent experimental findings.
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Landau damping of plasma oscillations in a collisionle
plasma is one of the most fundamental and widely u
concepts in plasma physics. Although Landau’s clas
paper [1] is the standard point of departure for discussi
of kinetic stability theory in most textbooks, it raise
some vexing physical questions. Why should plas
oscillations damp in a collisionless plasma in which t
underlying dynamics is time reversible and nondissipati
If the asymptotic time dependence of linear perturbatio
in a collisionless plasma is written in the form exp�2ivt�,
the Landau theory predicts damped plasma oscillati
with Imv , 0 for monotonic distribution functions. Bu
unlike the unstable solutions for nonmonotonic distributi
functions, the damped solutions are not eigenmodes. W
is the physical reason for this strange asymmetry? If
plasma supports unstable eigenmodes with Imv . 0, why
does it not support stable eigenmodes with Imv , 0 when
the distribution function is monotonic?

These questions have been answered by the work of
Kampen [2], Case [3], and Dawson [4] within the fram
work of the collisionless theory. A key to understandi
Landau damping is phase mixing, made possible by
presence of a continuous spectrum which lies on the
axis (Imv � 0) of the complex-v plane. This continu-
ous spectrum is associated with a complete but singula
of eigenmodes, known as the Case–Van Kampen mo
(discussed in textbooks, e.g., [5–7]). It takes very spec
that is, singular initial conditions to excite isolated Cas
Van Kampen modes. In most situations of physical int
est where the initial conditions are smooth, a broad a
continuous spectrum of Case–Van Kampen modes is
cited. The Landau-damped waves are not eigenmodes
are remnants, in the long-time limit, after a continuous a
complete set of singular eigenmodes, each one of wh
is purely oscillatory, have interfered destructively (in t
sense of the Riemann-Lebesgue theorem).

How is this widely accepted physical picture of Land
damping modified if collisions are introduced? Lena
and Bernstein [8] considered the problem using an
erator of the Fokker-Planck-type [9]. They obtained
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exact analytic solution with a dispersion relation which
formally reduces to that of Landau in the limit of zero
collisions, but they did not discuss the nature of th
spectrum or the effect of collisions on the Van Kampe
eigenmodes. Su and Oberman [10] (and Karpman [11
claimed that plasma wave echoes [12] (and the ballist
response) which owe their existence to the intrinsic tim
reversibility of the Vlasov equation, should decay very
rapidly due to the presence of collisions. Specifically, us
ing the Lenard-Bernstein collision operator, they predicte
that spatial echoes should decay as exp�2�n�vpl

3
D�x3�

and temporal echoes as exp�2nv2
pt3�, wheren is the col-

lision frequency,vp is the plasma frequency, andlD is
the Debye length. Su and Oberman made the crucial a
sumption, repeated subsequently in textbooks [6], that
the presence of collisions an eigenfunction can always b
found for any real value ofv. In other words, they as-
sumed implicitly that the continuous spectrum remains in
tact in the presence of collisions.

In a recent experiment [13] involving a weakly col-
lisional stable plasma, the measured decay rate for t
least damped electrostatic ion perturbations was found
be substantially weaker and scaled quite differently tha
predicted by the Su-Oberman theory. Skiffet al. [13]
suggested that collisions change the spectrum of plasm
excitations and presented experimental and numerical e
dence that the electrostatic ion wave spectrum is discret

The evidence presented in [13] motivates us to revis
the classical problem of Landau damping of plasma o
cillations, including collisions in the theory. We demon-
strate that the Case–Van Kampen continuous spectru
is eliminated for the Lenard-Bernstein collision operator
even in the limit of zero collision frequency�n ! 0�. The
eigenmodes are qualitatively different from Case–Va
Kampen modes in then ! 0 limit. We do recover the
Landau-damped solutions in then ! 0 limit, but in con-
trast to their character in the collisionless theory�n � 0�,
they are discrete eigenmodes of the weakly collisiona
system. Furthermore, in this limit, we find new dampe
eigenmodes, not obtained by the Landau analysis. F
© 1999 The American Physical Society
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nonzero values of n, the discrete spectrum deviates sub-
stantially from that obtained by the Landau analysis.

We concur with the result [13] that the Su-Oberman the-
ory of collisional damping of plasma echoes is in error. Su
and Oberman observed correctly that for small values of
n the Fokker-Planck collision operator involves singular
perturbations on the collisionless problem, but erred by as-
suming implicitly that the Case–Van Kampen continuous
spectrum is preserved in the presence of collisions.

In contrast with [13] which dealt with electrostatic ion
perturbations, we assume that the ion distribution is un-
perturbed, and focus on electrostatic electron perturba-
tions [1–3,8,10]. However, the main conclusions of this
paper remain the same for the ion problem, despite some
technical differences. We begin with the one-dimensional
linearized equations for the electron distribution function
f�x, t, y�, coupled with the self-consistent Coulomb’s law
for the electric field,

≠f
≠t

1 y
≠f
≠x

2
e
m

≠f0

≠y
E � n

≠

≠y

µ
yf 1 y2

0
≠f
≠y

∂
, (1)

≠E
≠x

� 24pe
Z `

2`
dy f�x, t, y� . (2)
The collision frequency n is a constant, and 2e, m,
and y0 are, respectively, the charge, mass, and thermal
speed of the electron. The function f0 is the equilibrium
Maxwellian distribution. The right-hand side of (1)
is the linearized collision operator used in [8,10,11].
Unlike the full Fokker-Planck collision term representing
electron-electron as well as electron-ion collisions [14],
the form (1) neglects electron-ion collisions and assumes,
furthermore, that the electron-electron collision frequency
n does not fall off with increasing velocity. However, the
form (1) does conserve particles, satisfies the H theorem,
and preserves the diffusive character of the full Fokker-
Planck operator in velocity space.

We seek solutions of the form f�x, t, y� �
f̃�k, v, y� exp�i�kx 2 vt��. In what follows, we
consider two problems at once: (i) the temporal evolution
problem, for which k is real and v is complex, and
(ii) the spatial evolution problem, for which v is real
and k is complex. The temporal evolution problem is
most commonly discussed in textbooks, but the spatial
evolution problem is of greater relevance for experiments
[13]. We define a slightly different set of dimensionless
variables in cases (i) and (ii). Combining Eqs. (1) and
(2), we obtain
�u 2 V�g�u� 2 h�u�
Z `

2`
g�u0� du0 � 2im

≠

≠u

µ
ug 1

1
2

≠g
≠u

∂
, (3a)

for case (i), where u � y��
p

2 y0�, V � v��
p

2 ky0�, g �
p

2 y0f̃�n0, g0 � exp�2u2��p1�2, n0 is the equilibrium
electron density, h�u� � a�≠g0�≠u��2, a � v2

p��k2y
2
0� � 4pn0e2��mk2y

2
0�, and m � n��

p
2 ky0�. For case (ii), we

obtain µ
u 2

1
k

∂
g�u� 2

h�u�
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m

k

≠

≠u

µ
ug 1

1
2
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∂
, (3b)
where k �
p

2 ky0�v, and we redefine a � 2v2
p�v2,

m � n�v, keeping all other definitions the same as for
case (i).

For the collisionless problem �m � 0�, it has been
shown by Van Kampen [2] and Case [3] that any real
V is an eigenvalue with a singular eigenfunction given by

gV�u� � P

∑
h�u�

u 2 V

∏

1 d�u 2 V�
∑
1 2 P

Z `

2`

h�u0�
u0 2 V

du0

∏
, (4)

where P denotes the principal part. In other words,
the spectrum of eigenvalues is a continuum that lies on
the real axis in the complex V plane. On the other
hand, Landau [1] showed that the plasma oscillations are
damped according to the relation

D�Vn� � 1 2
Z h�u�

u 2 Vn
du � 0 , (5)

with an infinite number of discrete roots Vn, each with
a negative imaginary part. A smooth initial condition
g�u� can be represented by the linear superposition of a
complete set of singular Case–Van Kampen eigenmodes
gV�u� which, in the limit t ! `, decay with the damping
rate specified by (5). The decaying solution is not
an eigenmode, but it is what remains in the long-time
limit after a continuous spectrum of purely oscillatory
eigenmodes have phase mixed. (Strictly speaking, in
the t ! ` limit, the collisionless theory is fundamentally
problematic, because the velocity gradient of f becomes
singular unless collisions are invoked to smoothen out the
singularity.)

In Fig. 1, we indicate by crosses �3� the Landau roots
of the spatial evolution problem in the complex k plane
for a � 1.6, obtained by solving the dispersion relation
1 1 a�1 1 Z�1�k��k��k2 � 0, where Z is the plasma
dispersion function. The Landau roots for the temporal
evolution problem are qualitatively similar if plotted in
the complex V21 plane. For both problems (i) and (ii),
there are roots with progressively smaller spacing near
the origin which lie asymptotically on the straight line
through the origin and the point �1, 1�.

We now discuss how the collisionless �m � 0� re-
sults change in the collisionless limit m ! 0, since this
represents a singular perturbation. Following [13] and
1975
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[15], we solve (3a) by introducing an expansion based
on a complete set of normalized Hermite polynomials,
1976
g �
P`

n�0 anHn�u� exp�2u2�, so that (3a) reduces to the
matrix eigenvalue problem,
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, (6)
for the infinite-dimensional vector an. In principle, the
problem can be solved by keeping up to n terms and
solving numerically the resultant n 3 n matrix equation
to determine the eigenvalues [13,15]. However, because
the coefficient of m increases linearly with n on the right-
hand side of (6), we need to keep an increasingly large
number of terms in the limit m ! 0. This requirement
imposes a severe constraint on the minimum value of
m for which a direct numerical solution of the matrix
equation (6) can be obtained. It is less constraining to
rewrite (6) as a recurrence relation

a1 �
p

2 Va0 ,

a2 � ��V 1 im�a1 2 �1 1 a�a0�
p

2 � ,

an11 �

s
2

n 1 1

∑
�V 1 inm�an 2

r
n
2

an21

∏ (7)

for n $ 2 .

It can be shown easily that

an11

an

n!`
!

(
im

p
2n �“ large” �

1��im
p

2n � �“ small” �
. (8)

Since a physically acceptable eigenfunction must satisfy
the condition an ! 0 as n ! `, the eigenvalue problem
reduces to a search for V such that the iteration of (7)

FIG. 1. Eigenvalues on the complex k plane for the spatial
evolution problem with a � 1.6. ��� m � 0.1; �✳ � m � 0.05;
�1� m � 0.025; �3� Landau roots �m � 0�.
converges on the “small” solution. To avoid numerical
instability during iteration, we start out with a large n and
iterate (7) backwards. This ensures that the backward se-
ries stays close to the small solution, but the backward
series will not necessarily match the forward series unless
V is an eigenvalue. After the eigenvalue is determined
by matching the two series to a specified level of accu-
racy, the eigenfunction is simply obtained by substituting
the values of an in the Hermite expansion.

Figure 1 shows numerical results for the spatial evo-
lution problem for a � 1.6. In addition to the Landau
roots �m � 0� which are marked by crosses �3�, we plot
the weakly collisional roots for three other values of m:
m � 0.1, denoted by diamonds ���; m � 0.05, denoted by
stars �✳ �; and m � 0.025, denoted by plusses �1�. (The
last set of points was resolved using quadruple precision.)

The Landau root for the least-damped solution is indi-
cated by a cross very close to the real axis, near kr � 0.33.
The weakly collisional, least-damped eigenvalue tends to
the least-damped Landau solution as m decreases. The nu-
merical data illustrating this behavior are shown in Table I.
We see that the correction to the imaginary part of the least-
damped Landau root is approximately given by im. How-
ever, as shown in Fig. 1, other damped Landau roots suffer
more drastic changes due to the presence of collisions, not
described by the simple �k 1 im� rule. In Table II, we
present the numerical data on the least-damped eigenvalue
of the temporal evolution problem for a � 9. Again, the
least-damped eigenvalue tends to the least-damped Landau
solution as m decreases, with a correction that is approxi-
mately given by 2im.

Lenard and Bernstein derived a dispersion relation
�DLB � 0� for the collisional problem which tends to
the Landau relation �DL � 0� in the limit m ! 0. This
motivates us to write DLB � DL 1 mD1 1 m2D2 1 . . . .

TABLE I. Numerical values of the least-damped eigenvalue
k for different values of m with a � 1.6 for the spatial evolu-
tion problem.

m kr ki

0.1 0.337 065 2 0.105 687 1
0.01 0.331 301 3 0.014 547 5
0.001 0.331 130 0 0.005 465 0
0.0001 0.331 117 3 0.004 558 8
Landau root �m � 0� 0.331 115 9 0.004 458 2
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TABLE II. Numerical values of the least-damped eigenvalue
V for different m with a � 9 for the temporal evolution
problem.

m Vr Vi

0.1 2.517 732 3 20.127 010 1
0.01 2.542 284 6 20.062 245 8
0.001 2.545 516 7 20.055 623 7
0.0001 2.545 785 5 20.054 960 1
0.000 01 2.545 812 4 20.054 893 7
Landau root �m � 0� 2.545 815 4 20.054 886 4

However, the Lenard-Bernstein dispersion relation,
DLB � 0 admits additional roots, not included in the
Landau relation, DL � 0. It is easy to see that in the
limit m ! 0, these additional roots (for which DL fi 0)
must tend to poles of the Lenard-Bernstein dispersion
relation so that the finite value of DL can be canceled by
other terms in the expansion of DLB in powers of m. For
the spatial and temporal evolution problems, these poles
are located, respectively, at V � 2i�nm 1 1��2m�� and
k2 � 2�im 2 nm2�, where n � 0, 1, 2, 3, . . . . It follows
that for the spatial evolution problem k2

r 2 k
2
i � 22nm2,

and krki � m. Hence as m ! 0, these additional eigen-
values asymptote to the imaginary k axis and there exits a
limiting continuum (the imaginary-k axis) which becomes
discrete for any nonzero m. This continuum should be
distinguished from the Case–Van Kampen continuum
(the real-k axis) which is eliminated even for extremely
weak collisions. For the temporal evolution problem, the
additional roots all tend to 2i` and represent modes that
are damped very quickly.

In Fig. 2, we plot the eigenfunction (solid line) of
the least-damped mode with eigenvalue V0 (numerical
values in Table II) of the temporal evolution problem
with a � 9. We compare the numerical eigenfunction
to the analytical exterior region solution h�u���u 2 V0�.
We see that the numerical and analytical solutions agree
very well in the exterior region of u centered around V0r .
Figure 2 might suggest that the boundary layer, where the
eigenfunction departs from the exterior region solution,
shrinks as m decreases, but this is not what actually
occurs. In fact, we find numerically that as m ! 0, the
boundary layer tends to a fixed width (of the order of
jV0i j) while the eigenfunction within the layer becomes
increasingly singular.

The results presented above call for the development of
a new asymptotic theory for the damping of plasma os-
cillations in weakly collisional plasmas. For the Lenard-
Bernstein collision operator, we conjecture that the class
of discrete eigenmodes, some of which we have calcu-
lated numerically, is complete, but we do not have a for-
mal proof yet. It is possible that a more realistic collision
operator in which the collision frequency has velocity de-
pendence [14] may support a continuous spectrum (dis-
tinct from the Case–Van Kampen continuum) in addition
to the discrete spectrum discussed above. Also, the inclu-
sion of electron-ion collisions is likely to alter the actual
FIG. 2. Solid curves: eigenfunctions corresponding to the
least-damped eigenvalue V0 for the temporal evolution problem
with a � 9. Dashed curves: the function h�u���u 2 V0�.
(a) and (b): Real and imaginary parts of the eigenfunction,
respectively, for m � 0.025. (c) and (d): Real and imaginary
parts of the eigenfunction, respectively, for m � 0.000 390 625.

damping rates. However, we believe that our results on
the destruction of the Case–Van Kampen continuum and
its replacement by a discrete spectrum will continue to be
essential features of the weakly collisional theory, even if
a more realistic collision operator is used.
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