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Surface Wave Scattering by a Vertical Vortex and the Symmetry
of the Aharonov-Bohm Wave Function
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Surface waves interacting with a vertical vortex are studied both analytically and experimentally.
There are similarities as well as differences with the Aharonov-Bohm effect: among the former, a
dislocation in the wave fronts that is proportional to the vortex circulation, and among the latter, a
significant change in the symmetry of the scattered wave.
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Ever since the appearance of the landmark paper by
Aharonov and Bohm [1], the fact that the dynamics of a
charged quantum particle is affected by the vector potential
even when the magnetic field vanishes has been a source
of inspiration and applications in widely different fields of
physics. Berry [2] showed that this effect was embedded in
a more general geometrical framework (“Berry’s phase”),
a fact that has also had wide reaching consequences [3].

In a different development, Berry et al. [4] cleared
up many issues arising when electrons interact with the
vector potential generated by a magnetic field confined
to a cylinder into which the electrons cannot penetrate,
and showed that the global aspects of the Aharonov-Bohm
effect had a water wave analog. They noted that there
appears a dislocation on the electron wave fronts that
cannot be observed, but that the analogous effect on water
waves incident on an irrotational vortex can. The global
aspect of geometric phases, involving integrals around
closed paths in suitably defined spaces, is what gives them
their generality. Each specific problem, however, has its
own peculiarities. In this Letter, we report results of a
detailed study of the interaction of a water wave with a
vortex.

The study whose results we report herein has an
additional motivation: coherent structures such as vortex
filaments are prominent features of turbulent flows [5],
and vortex stretching is believed to be a major ingredient
in the cascade of energy from large to small scales
that is characteristic of those flows. However, due
to the paucity of nonintrusive experimental methods,
the characterization of vortical structures is still poor.
Recently, it has become apparent that it is possible
to obtain valuable information about vorticity fields by
looking at their interaction with an ultrasonic wave [6].
A full visualization of an acoustic wave is, however, a
difficult problem, and it is in order to get additional insight
into the wave-vortex interaction that we have undertaken
this study of the more readily visualizable surface waves.
This problem is also of interest on its own right, in order
to characterize surface flows in rivers, lakes, and seas [7].
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Here we report on an experimental study of the scat-
tering of a capillary water wave by a single vertical vor-
tex. Capillary waves are dispersive while acoustic waves,
closely analogous to shallow water waves, are not. In or-
der to bridge the gap between the two cases, and also be-
cause it lends itself more easily to comparison with the
quantum mechanical case, we have centered our theoreti-
cal study on surface waves over water of moderate undis-
turbed depth h, (constant) density r, and surface tension
t. In this case the appropriate dynamical variable c��r, t�
is the surface elevation of water over its undisturbed level
as a function of position in two space dimensions and time,
and it obeys the differential equation [8]
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where g is the acceleration due to gravity, and Dt �
≠t 1 �U ? =. The velocity �U is associated with a vertical
vortex. The shallow water limit obtains when the scale for
space variations is much larger than the fluid depth h so
that fourth order derivatives in (1) can be neglected. The
wave equation that results also describes acoustic waves
if
p

gh is identified with the speed of sound and c with
acoustic pressure. The interesting situation for present
purposes is when the vorticity = 3 �U vanishes outside a
circle, say, of radius a. To fix ideas, assume that inside
the fluid undergoes rigid body rotation.

An electron in the presence of a magnetic field with
vector potential �A is described by a wave function c that
obeys Schrödinger’s equation:

�2ih̄= 2 q �A��r��2c��r� � h̄2k2c��r� . (2)

Berry et al. [4] studied in detail the two dimensional
situation when the magnetic field associated with �A
vanishes outside a circle of radius a and the wave function
c cannot penetrate inside. They concluded that when a
plane wave is incident on the circle, the solution to (2)
consists of two portions: one is a dislocated modification
of the incident plane wave, and another is a scattered
wave. This separation is, however, meaningless in the
© 1999 The American Physical Society
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forward direction. The incident wave is dislocated by
an amount a � qF�h̄ where F is the magnetic flux
associated with the magnetic field contained within the
circle of radius a. On the basis of the dispersion relation
obeyed by water waves, they concluded that a similar
separation would occur in the case of a surface water
wave incident on a vertical vortex and that in this case the
amount of dislocation would be given by a � G�lcg,
where G is the circulation associated with the vortex,
l is the wavelength of the incident wave, and cg the
group velocity of surface waves. By analogy with crystal
dislocations, we shall call a the (dimensionless) Burger’s
vector of the wave.

It is possible to analytically solve Eq. (1) and the so-
lution bears out the global considerations of the previous
paragraph. There is indeed a dislocation with magnitude
given by the reasoning of Berry et al. [4]. However, there
is more: First, Eqs. (1) and (2), although of a similar struc-
ture, are different. Second, water waves penetrate inside
the vortex, while electrons do not necessarily penetrate in-
side a solenoid. These differences do not affect the fact
that in both cases there is a dislocated wave, but they do
affect significantly the scattered wave. The most striking
difference is that in the quantum mechanical case with im-
penetrable boundary conditions the scattered wave is sym-
metric (see Fig. 1, upper panel). As we will see below,
in the water wave case the scattered wave is asymmetric.
This difference is due to the fact that water wave fronts are
rotated by a finite amount inside the vortex. This rotation
also occurs when electrons interact with a magnetic field.
Indeed, solving Eq. (2) allowing the electron to penetrate
inside the solenoid leads to an asymmetric scattered wave
[9] (see Fig. 1, lower panel). For impenetrable boundary
conditions, the wave function is assumed to vanish inside
the solenoid, whereas for penetrable boundary conditions
we require the wave function to be finite at r � 0, and
continuity of the function and its first derivative at the so-
lenoid (vortex core) boundary.

To observe the surface wave case, we have performed
an experiment in which a plane fronted wave is excited
by moving horizontally a rigid dipper at the surface of
a water tank 10 cm deep, at frequencies and amplitudes
that range from 5 to 40 Hz and from 0.5 to 0.1 cm,
respectively [10]. The vortex forms spontaneously when
letting the water come out off the bottom of the tank
through a hole of 6 mm diameter. The vortex circulation
is enhanced by rotating, around its principal axis, a
disk of 15 cm diameter located close to the bottom.
The fluid within the vortex core performs rigid body
rotation, whereas the tangential velocity far from the
vortex core decays approximately as 1�r . The vortex
core a is estimated to be about 4 mm. In order to
visualize the scattered wave, the free surface of the
fluid was illuminated from above with a parallel beam.
A semitransparent mirror located at 45± with respect
to the horizontal deviates an horizontal incident beam
FIG. 1. Upper panel: Electron wave function for the scattering
by a magnetic field wholly contained within an impenetrable
solenoid of radius a � 0.36l for a � 0.2 (a), 0.5 (b),
1.0 (c), and 1.5 (d). Lower panel: same as upper panel but
electron is now able to penetrate the solenoid. Note the change
in the symmetry of the scattered wave. In all figures the
electron propagates from left to right and the vector potential is
positive. In both the penetrable and impenetrable case there is
a dislocated wave front with Burgers vector proportional to the
magnetic flux.

providing homogeneous and perpendicular lighting. The
light reflected on the wavy surface of water crosses the
mirror and forms caustic lines on a horizontal screen made
of diffusing glass and located just above the mirror.

Figure 2 shows the solution of Eq. (1) and the experi-
mental visualization of surface waves scattered by a verti-
cal vortex. These results can be compared to the solution
of Eq. (2) with impenetrable as well as penetrable bound-
ary conditions (see Fig. 1). All four cases exhibit wave
fronts with dislocations that increase with the magnetic
flux, in the quantum mechanical case, and with the vortex
circulation in the classical case. The quantum mechani-
cal case has a scattered wave that is up-down symmet-
ric when the cylinder is impenetrable, but this symmetry
no longer holds when the electrons can penetrate inside
the cylinder. This asymmetry is also present in the water
1967
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FIG. 2. Surface elevation for water waves scattered by a
vertical vortex. Theory, upper panel, and experiment, lower
panel. Water wave results correspond to f � 20 Hz, l �
1.0 cm, cg � 22.2 cm�s, a � 0.4l, and varying G. The in-
cident wave propagates from left to right and the fluid mo-
tion is counterclockwise. (a) G � 4 cm2�s, (b) G � 11 cm2�s,
(c) G � 21 cm2�s, and (d) G � 33 cm2�s. In both cases there
is a dislocated wave front with a Burgers vector proportional to
the vortex circulation. Water waves penetrate inside the vortex
and the scattered wave is correspondingly asymmetric.

wave case. Thus, the predictions based on Eq. (1) coin-
cide with experimental results in this respect.

In addition to the surface visualization just described,
we have performed measurements of the amplitude and
phase of the surface wave by measuring the deflection
of a laser beam reflected at the wavy water surface [11].
Laser deflection is detected by a two axis position sensor.
An x-y displacement system located just above the fluid
provided the horizontal motion to scan the whole surface.
Phase and amplitude of the wave can thus be measured
with respect to the source by a lock-in amplifier, and
this allows us to quantify the amount of dislocation by
measuring the relative phase of the dislocated wave with
respect to the incident one: The jump in phase obtained
when crossing the line of dislocation is directly related
to the adimensional Burger vector. By varying the wave
1968
frequency and vortex circulation we have verified that, in
the low circulation G limit, a is proportional to both G

and the inverse of group velocity cg, as predicted by the
theory.

The accuracy of the measurements obtained via laser
beam deflection is quite high, and it allows us to test
the limits of the theory used to derive Eq. (1). Figure 3
is an experimental spatial map of the wave amplitude
for G � 6 cm2�s, obtained by plotting at each point the
maximum amplitude of the wave. Thus, this map does
not contain phase information, and the variations in such
amplitude in Fig. 3 correspond to nodal and antinodal
lines resulting from the interference between the incident
and the scattered wave. Note that dislocations are a
result of a phase shift on the plane wave, so they cannot
be detected with this method. The depression observed
on Fig. 3 immediately behind the vortex is then not an
interference effect but it is the shadow due to the finite
size of the vortex core.

The information contained in Fig. 3 can be used to
measure the scattering cross section of the surface wave
by the vertical vortex. Indeed, this is obtained by
measuring the surface deflection following the angular
direction for a given distance from the vortex core.
Figure 4 is the ratio of the scattered wave amplitude As

to the incident amplitude A0 as a function of polar angle
u, for several values of a and for a given frequency
f. Here As is defined as As � A 2 A0, where A is the
total wave amplitude. Since oscillations in the measured
amplitude A following the angular direction are due
to constructive and destructive interferences between
the incident and the scattered wave, the envelope of
oscillations in As�A0 is the scattering cross section which,
as shown in Fig. 4, decreases with a. Theoretical values
based on Eq. (1) are shown for comparison in Fig. 4a.
Agreement is quite good for a � 0.5 and becomes
poorer as a increases. Now, the Burgers vector a is
a linear increasing function of circulation G. In turn, a
larger circulation determines a larger surface deformation

FIG. 3. Experimental surface deflection, obtained by scanning
as described in the text, for G � 6 cm2�s, f � 18 Hz, l �
1.1 cm, and cg � 15.5 cm�s. The elevation at the center is the
surface deformation associated with the undisturbed vortex.
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FIG. 4. Experimental surface wave amplitude As, normalized
to A0, obtained by scanning the water surface around the vortex
following a circle of radius r � 3 cm, for f � 18 Hz, l �
1.1 cm, cg � 15.5 cm�s, and several values of the dislocation
parameter a. Parts (a) and (b) show the theoretical and
experimental results, respectively, for comparison.

associated with the undisturbed vortex core. Equation (1),
being a leading order correction to the shallow water
wave equation, considers wavelengths long compared to
fluid depth, and does not consider the possibility of the
penetration length of the wave into the fluid being of
the same order as the undisturbed surface deformation
associated with the vortex. We believe this fact may be
at the root of the increasing disagreement between theory
and experiment shown in Fig. 4 for increasing a.

In conclusion, we have measured the surface elevation
of water waves in interaction with a vertical vortex,
and analyzed it using an equation valid to leading order
beyond shallow water theory. Although this takes into
account dispersion only to a first approximation, the main
experimental results are well captured by the theory:
The incident wave front becomes dislocated, and there
is an asymmetric scattered wave. Within experimental
accuracy, and within assumptions needed to get a tractable
theory, there is good agreement for the amount of
dislocation as a function of vortex circulation, phase shift
as a function of frequency, and scattering cross section
as a function of circulation and wavelength. Detailed
comparison with the scattering of a quantum mechanical
electron by a solenoid into which it cannot penetrate
shows that in both cases there appears a dislocated wave,
but that in the latter case the impenetrable boundary
conditions enforce a symmetry of the scattered wave.
This symmetry no longer holds if the electron is allowed
to penetrate inside the solenoid. Water waves can, of
course, penetrate inside the vortex, and the scattering is
correspondingly asymmetric.
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