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Spin-Peierls Transition in the Heisenberg Chain with Finite-Frequency Phonons
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We study the spin-Peierls transition in a Heisenberg spin chain coupled to optical bond phonons.
Quantum Monte Carlo results for systems with up to N � 256 spins show unambiguously that the
transition occurs only when the spin-phonon coupling a exceeds a critical value ac. Using sum
rules, we show that the phonon spectral function has divergent (for N ! `) weight extending to zero
frequency for a , ac. The phonon correlations decay with distance r as 1�r. This behavior is char-
acteristic for all 0 , a , ac and the q � p phonon does not soften (to zero frequency) at a � ac.

PACS numbers: 75.10.Jm, 63.22.+m, 75.40.Cx, 75.40.Mg
The S � 1�2 Heisenberg spin chain is unstable towards
dimerization (the spin-Peierls transition) when coupled to
an elastic lattice [1]. For phonons in the adiabatic limit,
this transition has been predicted to occur for arbitrarily
weak spin-lattice coupling [1]. On the other hand, recent
work in the antiadiabatic (high-frequency) limit suggests a
transition only above a critical coupling [2]. The mecha-
nism of the transition in this limit was suggested to be
qualitatively different, with no softening of the q � p

phonon [2]. A way to reconcile these results has been
proposed within an improved mean-field (RPA) theory [3],
with the result that a complete phonon softening occurs
only for bare phonon frequencies v0 less than a critical
value. For higher v0, a central peak appears in the phonon
spectral function and the phonon branch remains gapped.
Considering the manifestly uncontrolled nature of mean-
field calculations in one dimension, nonperturbative results
in the regime of phonon frequencies comparable to the
magnetic exchange energy J are required to test this novel
scenario.

In this Letter, we address the issues of a critical spin-
phonon coupling and the mechanism of the zero tempera-
ture dimerization transition in the strictly one-dimensional
case, using quantum Monte Carlo (QMC) simulations to
obtain numerically exact results for relatively large sys-
tems. The model we study is defined by the Hamiltonian

H � J
NX

i�1

�1 1 axi�Si ? Si11 1 v0

NX
i�1

ni , (1)

where xi � �a1
i 1 ai��

p
2 is the phonon coordinate and

ni � a1
i ai is the phonon occupation number at bond i.

We use a recently developed QMC method based on
sampling the perturbation expansion in the interaction rep-
resentation [4]. For a finite lattice at finite inverse tempera-
ture b, the expansion converges for any decomposition of
H � H0 1 V into diagonal (H0) and perturbing (V ) terms
and can be used [5] as a basis for a “world line” Monte
Carlo algorithm in continuous imaginary time (i.e., without
invoking the Trotter decomposition [6]). We include only
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the bare phonons in the diagonal term; H0 � v0
P

i ni .
The updating of the spin degrees of freedom can then be
carried out using a new efficient “operator-loop” algorithm
[7], which, in particular, allows for sampling of all wind-
ing number sectors and hence direct evaluation of the spin
stiffness [8].

We consider an energy v0 � J�4 for the bare phonons
and study the behavior for values of the spin-phonon cou-
pling in the range 0 # a�J # 0.5. We have studied sys-
tems with N up to 256 at inverse temperatures b � J�T
sufficiently high to give ground state results. Typically,
for the system sizes we have considered, b as high as
�2N is required to achieve convergence to the T � 0
limit of all the quantities of interest. We have used at
least b � 4N for all calculations presented here.

Note that in the model, Eq. (1), for a . 0 there is an
energy gain associated with an average uniform phonon
displacement �x� � �1�N�

P
i�xi� . 0, which leads to an

increased average effective spin-spin coupling Jeff � J 1

a�x� . J. For v0�J � 0.25 at T � 0, we find Jeff�J �
1.018, 1.071, 1.158, 1.278, and 1.430 for a � 0.1, 0.2,
0.3, 0.4, and 0.5, respectively. We will in some cases
measure energies in units of Jeff instead of the bare
exchange J.

The most direct signal of the dimerization that can
be measured in our simulations is the approach of the
staggered phonon correlation function �21�r �xixi1r � to a
nonzero value at long distances r . Our results for this
quantity indicate a critical coupling 0.1 , ac�J , 0.35
for v0�J � 0.25 [9]. In order to improve on the accuracy
of this rough estimate, and to circumvent potential prob-
lems with detecting a very small dimerization (as would
be the case for very weak coupling if the mean-field result
ac � 0 would be correct), we have also considered sev-
eral other quantities. It is particularly useful to study the
effects of the dynamic phonons in the spin sector (in gen-
eral, our simulation results for spin quantities have smaller
statistical fluctuations than the phonon correlations). Thus
we discuss here results for the spin stiffness and the stag-
gered spin susceptibility.
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If the dimerization transition occurs at some critical
coupling ac . 0, it is expected to be of the Kosterlitz-
Thouless (KT) type [10]. The spin stiffness rs, i.e., the
ground state energy curvature with respect to a uniform
twist f in the spin-spin interaction [11],

rs �
1
N

≠2E0�f�
≠f2 , (2)

is then expected to exhibit a discontinuous jump from a
finite value for a # ac to zero for a . ac (reflecting
the opening of a spin gap). For a finite system the
jump will be smoothed. In Fig. 1 we show results for
the stiffness versus a�J for several system sizes. The
behavior expected for a KT transition is seen clearly—
rs rapidly approaches zero for a�J * 0.4 but appears
to converge to a finite value for a�J & 0.2, indicating
a critical coupling between these values, in agreement
with our previous results for the dimerization. It is,
however, not easy to extract an accurate value for ac

using these results. The scaling behavior is complicated
by logarithmic corrections, which we expect to be present
for all a # ac as in the case of the Heisenberg chain
[i.e., a � 0 in Eq. (1)]. This is in contrast to the
finite temperature KT transition in the two-dimensional
XY model, where rs approaches its asymptotic value
algebraically for T , Tc and logarithmically only exactly
at Tc [12,13]. An indication of the difficulties associated
with the log corrections in the spin-phonon chain can
be seen in our stiffness data for a � 0, for which the
exact infinite-size value is known to be (in our units)
[11] rs � 1�4; about 8% lower than what we find for
N � 128.

FIG. 1. Spin stiffness vs spin-phonon coupling for system
sizes N � 8, 16, 32, 64, and 128 (rs decreases with increasing
N). Where not shown, statistical errors are smaller than the
symbols. The curves are high-order polynomial fits to the data
points.
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Although the log corrections complicate the extraction
of ac from the stiffness data, their presence in other
quantities can in fact be useful in numerical calculations.
The asymptotic behavior of the spin correlation function
of the Heisenberg chain is known from bosonization and
conformal field theory [14,15]

�Sz
i Sz

i1r� �
�21�r

r
ln1�2�r�r0� . (3)

We expect this form to apply for all a , ac. The
logarithmic correction should vanish at the critical point
ac, as it is known to do, e.g., at the critical point of the
frustrated J1 2 J2 chain [16]. We have calculated the
staggered spin susceptibility

xs�p� �
1
N

X
m,n

�21�n2m
Z b

0
dt �Sz

n�t�Sz
m�0�� , (4)

for which Eq. (3) and conformal invariance imply the
finite-size scaling form [15]

xs�p� � N ln1�2�N�N0� . (5)

In Fig. 2 we graph �xs�p��N	2 vs ln�N� for a�J in
the range 0.1 0.3. For a�J � 0.1 and 0.2 the linear
behavior for the larger system sizes is consistent with
the form (5) expected in the gapless phase, whereas for
a�J � 0.25 and 0.3 there is a decrease with increasing N ,
corresponding to a finite asymptotic value for xs�p� and
therefore the presence of a spin gap. For a�J � 0.23 the
curve is almost flat within statistical errors for N $ 32,
implying that xs�p� diverges linearly with N without
log correction. Based on these results we conclude that
ac�J � 0.225 6 0.015.

FIG. 2. Size dependence of the staggered spin susceptibility
for different values of the spin-phonon coupling. A linear
behavior of �xs�p��N	2 vs ln�N� is expected in the gapless
phase, with slope zero at the critical point. A decrease with
increasing N indicates the presence of a spin gap.
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Having established a KT transition and the critical
coupling, we now turn to the question of the behavior of the
q � p phonons at the transition. We consider the phonon
spectral function

A�q, v� �
X
m,n

e2bEn j�mjxqjn�j2d�v 2 �Em 2 En	� ,

(6)

where xq � �1�
p

N �
PN

j�1 exp�2iqj�xj . This real-
frequency dynamic quantity cannot be obtained directly in
our simulations. In order to avoid the problems associated
with numerically continuing imaginary time data to real
frequency, we here study sum rules that relate A�q, v�
to quantities that can be directly calculated. Two useful
integrals that can be easily obtained from Eq. (6) are

Sx�q� �
Z `

0
dv A�q, v� �1 1 e2bv� , (7a)

xx�q� � 2
Z `

0
dv A�q, v�v21�1 2 e2bv� , (7b)

where Sx�q� and xx�q� are the static structure factor and
susceptibility

Sx�q� � �x2qxq� , (8a)

xx�q� �
Z b

0
dt �x2q�t�xq�0�� . (8b)

Using Eqs. (7a) and (7b) one can readily verify [17] that
the ratio

R�q� � 2Sx�q��xx�q� (9)

is an upper bound for the lowest phononic excitation of
momentum q. For a $ ac we therefore expect R�p� !
0 as N ! `, reflecting the presence of two degenerate
ground states with momenta 0 and p (linear combinations
of the two possible real-space dimerized states). For a �
0, R�q� � v0 for all q. A transition caused by a softening
of the q � p phonon would imply R�p� . 0 for a , ac

and R�p� ! 0 as a ! ac. This behavior is not seen in
our results. Instead, R�p� appears to approach zero as N is
increased even for a much smaller than the critical value,
as shown in Fig. 3. Hence the spectral weight extends to
zero frequency also in the nondimerized systems.

We also find that the total spectral weight, given
by the structure factor according to Eq. (7a), diverges
with N . In Fig. 4 we graph Sx�p� versus the logarithm
of the system size for values of a both below and
above the critical coupling. We find a linear increase
for a , ac, indicating a logarithmic divergence and
therefore an inverse distance decay of the real-space
phonon correlation function. For a � 0.3 . ac the
divergence is faster than logarithmic. The expected linear
in N behavior cannot be observed close to ac for the
system sizes we have studied, due to large short-distance
contributions to Sx�p�. For a $ 0.4 we do observe an
almost linear divergence with N .

These results show that, in the thermodynamic limit,
there is infinite q � p phonon spectral weight also for
FIG. 3. Upper bound R�p� � 2Sx�p��xx�p� for the lowest
q � p phonon excitation energy vs the inverse system size.
The dashed line is at the noninteracting (a � 0) value v0�J.

a , ac. This weight extends to zero frequency. The rate
of decay of R�p� with increasing N , seen in Fig. 3, shows
that the low-frequency weight grows rapidly with N . The
only plausible explanation for this is that the phonon
spectral function has a central peak with infinite integral.
We now elaborate on the reasons for this behavior.

In the absence of spin-phonon couplings, the low-lying
excitations of the system are the two-spinon singlet and
triplet states of the Heisenberg chain. Our results indi-
cate that an arbitrarily weak coupling to the phonons in-
duces an infinite phonon spectral weight into these states
at the staggered momentum q � p . The asymptotic real-
space staggered phonon correlation function has the same
1�r decay as the spin-spin correlation function (perhaps
differing by multiplicative logarithmic corrections that
cannot be detected in our results for the phonon corre-
lations). This is not completely surprising, considering
that the Heisenberg chain is also characterized by an in-
verse distance decay of the dimerization correlation func-
tion ��Si ? Si11� �Si1r ? Si111r ��, as also recently noted
by Gros and Werner [3]. The corresponding susceptibil-
ity is therefore divergent and this leads to the spontaneous
dimerization for arbitrarily weak spin-phonon couplings
in the adiabatic case v0 � 0. What we have shown here
is that dynamic (v0 . 0) phonons destroy the long-range
order for weak spin-phonon couplings but nevertheless the
spin and phonon excitations remain coupled in a mani-
festly nonperturbative fashion.

The most plausible scenario for the mechanism of the
spin-Peierls transition is then the following: For weak
coupling a, the phonon spectral function at q � p has a
finite-weight peak close to the bare frequency v0, as well
as a central peak with divergent frequency integral [ln�N�
divergent as a function of system size]. As a is increased
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FIG. 4. Staggered phonon structure factor vs the logarithm
of the system size. The linear behavior for a � 0.1 and 0.2
corresponds to an inverse distance decay of the real-space
phonon correlation function. Note that with our definition
of the phonon coordinate, the noninteracting structure factor
equals 1�2.

the finite-frequency peak may shift slightly but remains at
finite frequency. The central peak sharpens and at a �
ac acquires a d function component, corresponding to the
development of static long-range order. For a . ac this
d function remains, and a gap develops to the remainder
of what was the finite-width central peak for a # ac.
This gap is the excitation energy of a lattice/magnetic
soliton pair.

On general grounds, we find it unlikely that there
would be any qualitative changes in the nature of the
T � 0 transition as v0 is varied. A recent density matrix
renormalization group study of a model closely related
to the one we have studied also finds unambiguously
that the critical coupling ac . 0 for any v0 [18]. In
addition, our results are consistent with the calculations
in the antiadiabatic limit [2] (although the infinite low-
frequency q � p phonon weight for a , ac was not
noted there), even though our v0 � J�4 is closer to
the adiabatic regime. Our estimated ac is in good
quantitative agreement with a recent calculation within an
effective spin model [19].

We have here discussed only the T � 0 quantum phase
transition in the strictly one-dimensional case. The finite
Tc in real materials such as CuGeO3 [20] can be due to
three-dimensional phonons, as well as interchain magnetic
198
couplings. The nonsoftening nature of the quantum phase
transition that we have found here clearly supports the
suggestion [2,3] that the finite-T transition may also be
nonsoftening. In the improved RPA theory [3], softening
occurs below a critical value of v0. In future work,
we plan to extend our simulations to two- and three-
dimensional systems and hope to address this important
issue.
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