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Supershielding: Confinement of Magnetic Fields
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In open-shield systems, we have derived current conditions that lead to remarkable magnetic-field
confinement, which we call “supershielding.” The freedom to vary both primary and shield currents is
important in solving the conditions. Solutions leading to very effective shielding are illustrated by the
simple system of two parallel flat strips. Generalizations include other geometries, internal shielding,
and electric-field confinement. An industrial coil design serves as a reference for practical issues. We
discuss mathematical limits, via a “seesaw” approach, to “perfect shielding.”

PACS numbers: 41.20.Gz
Shielding is often needed to protect the surrounding
neighborhood from the fields produced by electromag-
netic devices. In most applications, the shields do not
completely enclose their respective systems, in order to
allow access from the outside. One may assume that open
shielding would not be perfect, so an outward flux leakage
necessarily occurs.

In fact, for a variety of open systems of interest,
we have found that magnetic flux can be surprisingly
confined. Under theoretical conditions to be discussed,
the magnetic field is shown to be significantly suppressed
in an infinite spatial region bordering finite shields.

Consider, for example, a static magnetic field due
to currents on two concentric cylindrical coils. The
current distributions on both coils can be arranged to
obtain excellent exterior shielding: Outside the infinite
cylindrical surface in which the finite-length shield coil
is imbedded, the magnetic field is strongly suppressed.
This surface separates all space into two subspaces; the
magnetic flux is confined to the inner subspace with little
leakage into the outer subspace (“supershielding”). An
0031-9007�99�83(10)�1946(4)$15.00
industrial coil design based on the theory of this paper has
been presented recently in [1].

Two-strip system.—To illustrate supershielding, we
analyze two parallel flat strips whose total magnetic field
can be strongly suppressed above the upper strip, provided
both strip currents obey certain conditions. Analogous
results will hold for other systems.

Assume the lower (upper) strip to have infinite length
along the z direction, infinitesimal thickness, finite width
2L1 (2L2) in the x direction, its center at x � 0, and
location at y � a1 (y � a2) (see Fig. 1). The current
density on each strip is assumed to flow only in the z
direction with distributions along the x axis

Ji�x� � fi�x�d�y 2 ai�u�Li 2 jxj�, i � 1, 2 . (1)

The Heaviside function u limits the currents to the
strip widths. The fi�x� are taken, for convenience, as
symmetric functions. The index i � 1 �2� refers to the
lower (upper) strip.

With the Green function from [2], the Biot-Savart
formula yields the magnetic field components
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where R�k� � exp�2jkja�, the separation between the
strips is a � a2 2 a1, and

Fi�k� �
Z Li

2Li

fi�x� coskx dx (5)

are the Fourier cosine transforms of the current densities
on each strip. If the Fi are found first, their inverse
transforms yield the strip current distributions, fi:

1
p

Z `

0
Fi�k� coskx dk � u�Li 2 jxj�fi�x� . (6)
Supershielding conditions.—One equation for Fi is
motivated by a result which immediately follows from (2)
and implies perfect shielding above the upper strip:

�B � 0 for y . a2, if F2 � 2RF1 . (7)

Less directly, the relationship F2 � 2RF1 is a sufficient
condition for the vanishing of the normal component of
the field along the upper strip, which also forces this
component to be zero along the entire line y � a2, and
in fact kills the field completely above that line. (Note:
F1 � 2RF2 would kill the field below y � a1.)
© 1999 The American Physical Society



VOLUME 83, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 6 SEPTEMBER 1999
For a given e�k� that sets the level of shielding, we
define the set of supershielding conditions [including
condition (6) for jxj . Li] for the Fi:

F2�k� 1 R�k�F1�k� � e�k� (8)
andZ `

0
Fi�k� coskx dk � 0, for jxj . Li , i � 1, 2 . (9)

“Triviality” for L2 , `.—If we consider e�k� � 0
without a limit, there is an immediate worry: How can
the field be exactly zero above the line y � a2 even
outside the upper strip and be nonzero below that line?
[There is no problem, however, with continuity of the
field, or any of its derivatives, across that line, beyond
the strip, as can be seen from (2), (3), and (6).] By
considering a moment expansion in the region above the
line, we can argue that all moments for the strips as a
localized source vanish and that only a trivial solution
for the currents and fields exists. A related argument
is to use the well-known analytic formulation of two-
dimensional magnetostatics. We can analytically continue
the zero-field result along paths going down below the
line y � a2 and avoiding the upper strip and again come
to the trivial solution. Yet another argument can be based
on the convolution theorem indicating that the solution
F1 � F2 � 0 is forced upon us for e�k� � 0. But before
too much weight is placed on this discussion, we note
that, if the field above the upper strip is nonzero, but still
small, we can have a nontrivial solution with a sizable
field between the strips.

Nonzero constraints.—To consider nontrivial solu-
tions, we impose a single nonzero field constraint between
the strips, as a simple example.

Nontrivial solution for L2 � `.—Theoretically perfect
shielding [e�k� � 0] with smooth solutions can be found
for infinite shields and reasonable nonzero field con-
straints. For L2 � `, F2 is found solely from (8), since
its constraint in (9) disappears.

Nontrivial solution for L2 , `.—This is the situation
of interest: an upper strip with a finite width. We wish to
satisfy (8) and (9) along with the nonzero field constraint
for small, but nonzero e. It is the principal point of this
work that we can find numerical solutions to (8) and (9)
that give us both the desired field strength inside the strips
and first-rate shielding above the upper strip. Based on
our numerical studies, we find:

(A) The supershielding conditions can be solved for
sufficiently small e to obtain significant improvements in
shielding with nicely behaved current distributions. See
the current and field comparisons in the figures below.

(B) The techniques used to find well-behaved solutions
for these improvements involve specific constrained func-
tionals defined so as to control current oscillations and
magnitudes. See the discussion below.

(C) As a digression, there is a question about whether
we can improve the (already good) shielding referred to
in the above solutions. Consider approaching “perfect”
shielding in a singular, limiting procedure. As e !
0, the supershielding conditions, which tend to drive
toward a trivial solution, will fight with the nonzero
constraint. Instead of vanishing currents (as in the
trivial solution), however, we may expect increasingly
rapid and larger current oscillations (and the collapse
of the field around the nonzero constraint) as a signal
of this conflict. This suggests a “seesaw” trade-off for
the step-by-step improvement of shielding by solving
(8) and (9) for smaller and smaller e. At each step,
the current distributions will presumably become more
complicated.

Supershielding procedure.—The well-behaved current
distributions, giving effective shielding and referred to in
(A) above, can be found with the following steps:

(1) We first impose (8) with e � 0. (However, the
solutions at the end will correspond to e fi 0.)

(2) We next assume an infinitely wide upper strip,
which can support current along the whole line y � a2.
We enforce (9) only at discrete points jx

�i�
j j . Li , j �

1, . . . , Ni to suppress the current beyond the strip. (For
computational reasons, we also treat the lower strip in
the same manner.) Now, small (oscillating) currents can
reside farther out and the moment/analytical arguments no
longer apply in their strong form. Finally, the solutions
will be truncated to exactly satisfy (9).

(3) We define a functional for finding Fi�k� and to
eliminate solutions having undesirable oscillations, and
in particular to smooth the behavior between the isolated
points outside the strips. The above supershielding con-
ditions plus at least one nonzero field value inside are im-
posed through Lagrange multipliers [3].

(4) We determine the current distributions from (6)
once the transforms Fi�k� are found. We verify that these
are sufficiently smoothly localized whence the currents
outside the desired width 2Li can be neglected, and they
are then truncated for jxj , Li . Now e fi 0 in (8) [see
remark (8) for an estimate of e�k�.]

Numerical results for the strip model.—Consider the
minimization of the following energylike functional con-
strained by the supershielding conditions and one nonzero
x component B0 � 21.0 mT imposed at the midpoint be-
tween the strips:
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Here, l�k�, l
�i�
j , and L are the Lagrange multipliers

for (8), (9), and the field constraint, respectively. The
function g�k� is described below.

The extremum for the functional (10) leads to
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The Lagrange multipliers are found by substitution back
into the constraints.

The parameters for a specific example are given in
Fig. 1, except we first take a wider upper strip L2 �
0.15 m. Seven points x

�i�
j are chosen along the positive

x direction where (9) is enforced. The substitution of (8)
(with e � 0) and (14) into (9) and the field constraint
yields a system of linear inhomogeneous equations for the
Lagrange multipliers. We also choose g�k� � exp�gka�,
the nonunique factor that controls rapid oscillations and
the integral convergence. [With (14), the integrand in (11)
is proportional to 1�g�k�.] With g � 0.137, smoothly
localized currents are found, truncated, and exhibited in
Fig. 2. The extremely smooth and flat vanishing behavior
at the strip edge of the secondary current permits us
to truncate it further at L2 � 0.10 m. The upper strip
can thus be made narrower, as shown in Fig. 1, another
surprise that suggests a useful tactic for finding solutions.

FIG. 1. Geometry of the two-strip system and the “magilla”
flux lines exhibiting confinement of the total magnetic field.
With a defined minimum flux density, no flux lines appear
above the upper strip. For this example, L1 � 0.15 m, L2 �
0.10 m, and a2 � 2a1 � 0.05 m.
1948
In Fig. 3, we plot the field magnitude versus x for fixed
y � 0.06 m (i.e., one cm above the upper strip), where
the magnetic field is found from the Biot-Savart formula
using the currents from Fig. 2, or, after Fourier trans-
forms, from (2)–(4). The plot (a) is the supershielding
result and shows a reduction factor of at least 300 rela-
tive to the imposed value B0 midway between the strips
(and note that the field at x � 0 is much stronger just
above the lower strip—see Fig. 1). For comparison, we
show in (b) shielding obtained by the alternate method [3]
where one truncates an infinite-shield current distribution,
which is everywhere inferior to the supershielding result
(a) by at least an order of magnitude. In (c) and (d), we
consider the shielding due to the alternate method but for
wider strips. The implication is that we must go to an up-
per strip that is at least 5 times wider than the supershield
strip to achieve comparable shielding. For a picture of the
field confinement due to the supershield, flux lines have
been added to Fig. 1.

General remarks.—(1) Supershielding may be applied
to concentric finite-length circular [1] and elliptical
cylinders, slotted concentric cylinders and spheres, and
other geometries in which the Laplace operator sepa-
rates. (2) Complementary supershielding conditions hold
where, instead of shielding the region outside the larger
concentric cylinder, for example, the field inside the
smaller cylinder is suppressed. (3) Supershielding occurs
for both static and low-frequency magnetic and electric
fields. In the electric-field case, the charge densities are
governed by analogous sets of conditions. (4) A key idea
in supershielding is that the primary and secondary current
distributions have to work together. Additional degrees
of freedom in the current distributions are available to
establish desired field behavior in practical problems,
such as uniformity over a specific spatial region (or

FIG. 2. Current distributions on the upper (dashed line) and
lower (solid line) strips. The actual current distribution on the
lower strip is a factor of 10 larger than shown. The upper strip
current comes in so flatly zero at its edge that the strip (half-)
width can be reduced to L2 � 0.10 m.
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FIG. 3. Log plots for the magnitude of the magnetic field for
the strip system versus x along the horizontal line y � 0.06 m.
The supershielding result (a) is from the current distributions
of Fig. 2 (but with the upper strip current truncated at L2 �
0.10 m). Alternate shielding results derived from the truncation
method where the current for an infinitely wide upper strip is
found and then truncated to fit a given strip width equal to
(b) L2 � 0.10 m, (c) 5L2, and (d) 10L2. B0 is the x component
of the field at x � y � 0.

linearity in the practical design [1]). (5) In coil design, the
continuous current distributions are approximated by thin-
single-wire windings, whose density is found by stream-
function techniques [1,2]. (6) The mildly oscillatory
behavior in the primary strip current indicates a degree
of “self-shielding.” (The negative currents are achieved
in practice [1,2] by reversing the single-wire winding.)
However, the shielding by the secondary strip is much
more important than the self-shielding by the primary
strip. By a comparison with negative primary currents
excluded, we compute that the primary self-shields by a
factor of 1�4 at the shield position. But the secondary
strip further reduces that by a factor of about 1000. Self-
shielding becomes important only when the secondary
coil has a much smaller surface. (7) In view of the above
remarks, let us summarize some features of our industrial
design [1]. Cylindrical shields developed with previous
methods [3] have at least 10 times the flux leakage of this
supershielding design. Oscillations and self-shielding
play only a minor role, and there is only a factor of 3
difference between the primary and secondary currents.
(8) It is interesting to find a formal equation for the current
distributions fi�x� explicitly. That is, a transform of (8)
for e � 0 plus the restrictions (9) yields

f2�x�u�L2 2 jxj� � 2
a
p

Z L1

2L1

f1�y�
�x 2 y�2 1 a2 dy ,

(16)
which embodies the principal issues of the paper, is a
testing ground for different mathematical techniques, and
can only be solved in a limit. The extremely smooth and
flat vanishing of the secondary current (which suggests
bases with weighting factors like exp�2A��x 2 L2�2� for
constant A) mutes the step discontinuity. For jxj , L2,
we verify that (16) is satisfied with an error less than 1%
of the f2 current maximum, using the data from Fig. 2.
[This is consistent with the average relative value found
for e�k�.] A Gibbs-like undershoot beyond L2 � 0.15 m
is less than 2% of that maximum value, but dies off slowly,
and potentially reflects some limit as to how well we can
solve (16). The solutions will certainly be sensitive to the
a�Li values and the additional field constraints. (9) We
observe that other factors may limit the level of shielding
in a given application. With supershielding, we might
achieve this practical limit before running up against a
mathematical barrier. In the future, new developments
in technology may make more complicated currents more
feasible.
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