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cribes
the
Suppression of Tc in Superconducting Amorphous Wires
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The suppression of the mean field temperature of the superconducting transition,Tc, in homogeneous
amorphous wires is studied. We develop a theory that givesTc in situations when the dynamically
enhanced Coulomb repulsion competes with the contact attraction. The theory accurately des
recent experiments onTc suppression in superconducting wires, after a procedure that minimizes
role of nonuniversal mechanisms influencingTc is applied.
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Disorder suppresses the superconductivity transition
morphologically homogeneous superconductors [1–4] b
cause the diffusive character of the electron motion in dir
systems makes the Coulomb interaction more effective [
As a result, the attraction between the electrons in Coo
pairs becomes weaker, and the transition temperature,Tc,
is lowered. In two dimensions (2D) the influence of diso
der onTc can be studied systematically by varying the film
thicknessd [6–8]. In uniform filmsTc, being well defined,
is suppressed as the sheet resistance,R�, increases with
decreasingd. (For a review see Ref. [9].) When the ge
ometry of the sample is such that its dimension is lower
towards the one-dimensional (1D) limit, the suppression
superconductivity should become more pronounced [10

Recently, efforts have been made [11–13] to exte
the experiments in films to narrow wires by fabricating
series of amorphous Pb wires of different thicknesses a
widths. It has been found that theTc suppression becomes
stronger as the wires’ width reduces below1000 Å. The
experiment of Refs. [12,13] is in the crossover regio
from 2D to 1D. Actually, the wires are in the 1D limit
as far as superconducting fluctuations are concerned [1
but they are in the crossover region from 2D to 1D wit
respect to the diffusive motion of the electrons.

From the theoretical point of view, the problem ofTc

suppression in 1D wires is rather intriguing. As is we
known, the superconductivity transition is determined b
a series of logarithmically divergent terms describing th
electron scattering in the two-particle Cooper chann
In 2D systems the corrections due to the electro
electron �e-e� interactions combined with disorder are
logarithmically divergent as well [5]. As the whole
problem is controlled by logarithmic singularities, it ca
be studied by renormalization group (RG) methods [15
In 1D, due to the reduced dimensionality, the effect ofe-e
interactions is more singular. It produces corrections th
diverge as the square root of the frequency. The prese
of two types of singularities demands a special analysis
the calculation ofTc. In this paper we develop a theory
that describes adequately the effect of the dynamica
enhancede-e interaction onTc in the crossover region
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from 2D to 1D and perform a detailed comparison wi
the experiment.

The mean field temperature,Tc, is defined as the tem-
perature at which the electron scattering amplitude in t
Cooper channel,Gc, becomes infinite. Fluctuations of the
superconductivity order parameter lead to a broadening
the phase transition. However, its mean field tempe
ture can be found experimentally by fitting the upper pa
of the resistive transition to the Aslamazov-Larkin the
ory [14]. The diagrammatic representation of the amp
tude Gc is shown in Fig. 1. In addition to the contac
BCS-interaction amplitudeg, the terms arising as a re
sult of the interplay of the Coulomb interaction and diso
der are also included in the Cooper ladder-diagram ser
(The impurity scattering does not influence thee-e inter-
action mediated by phonons because in the long wa
length limit the lattice defects oscillate together with th
ions [16].) The resulting equation forGc is

Gc�en, el� � 2 jgj 1 tL�en 1 el�

2 2pT
MX

m�0

�2jgj 1 tL�en 1 em��

3
1

em
Gc�em, el� , (1)

whereem � 2pT �m 1 1�2� is the Matsubara frequency
and the summation overm is limited byM � �2pTt�21.
In this equationg, the bare value of the amplitudeGc,
is rescaled in such a way that the Debye frequency
a cutoff energy is substituted byt21, the inverse of
the scattering time. Then,g � 1� ln�Tc0t�1.14�, where
Tc0 is the temperature of the superconducting transiti
in the bulk limit. The parametert � �e2�2p2h̄�R�

characterizes the level of disorder in a sample, whereR�

is the sheet resistance. The amplitudeL describing the
combined action of thee-e interaction and disorder is
given by

L�vn� � u
4pD
La

X
qL,qa

1

Dq2
L 1 Dq2

a 1 vn
, (2)

wherea andL are the width and the length of the wire
respectively. The parameteru describes the amplitude o
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FIG. 1. The diagrammatic equation for the scattering ampli-
tude Gc in the Cooper channel. The block g denotes the
BCS-interaction amplitude. The block tL describes the inter-
play of the Coulomb interaction with disorder that leads to the
suppression of Tc. The wavy line is the screened Coulomb in-
teraction, dashed lines describe impurity scattering.

the e-e interaction when the momentum q transferred by
this interaction is not too small compared with the trans-
ferred frequency v, namely, when q * qv �

p
v�D.

(As was explained in Refs. [3,9], the most divergent con-
tributions from the region q , qv cancel each other out.
This happens because in this region of small momenta the
e-e interaction effectively depends only on the frequency,
and therefore it can be gauged out.) Next, for amorphous
Pb films the spin-orbit scattering time is expected to be
only a few times longer than the elastic scattering time
and therefore the part of the e-e interaction related to spin
density fluctuations can be neglected. In that case, we
may take u to be the value of the screened Coulomb inter-
action amplitude in the region of momenta q * qv , which
gives u � 1�2.

In 2D the summation in Eq. (2) yields L�vn� �
u ln�1�vnt�. Therefore, Eq. (1) combines the usual BCS
logarithms together with the ones arising due to disor-
der. Unlike the ladder diagrams in the BCS theory, the
integrations in the different blocks of the diagrams in
Fig. 1 cannot be factorized, because L�en 1 em� matches
the frequency arguments of two neighboring blocks. In
order to solve this parquetlike equation with a logarith-
mic accuracy one uses the approximation ln�z 1 z0� �
ln�max�z, z0	�; see, e.g., Ref. [17]. Then, it is possible
to apply the “maximum section” method. This procedure
leads to the RG equation for the amplitude Gc�´, ´� [3,15]:
dGc�dl´ � ut 2 G2

c , where l´ � ln�1�´t�. The integra-
tion of the RG equation gives the suppression of Tc by the
Coulomb interaction in 2D disordered systems:

ln

µ
Tc

Tc0

∂
�

1
jgj

2
1

2
p

ut
ln

1 1
p

ut�jgj
1 2

p
ut�jgj

. (3)

This formula accurately describes the experimental results
in MoGe films [6], with u � 1�2 and using only one
fitting parameter, g [3].

In 1D the result of the summation in Eq. (2) yields a
square root singularity in the amplitude L�vn�. When one
192
deals with singularities stronger than logarithmic ones, the
approximations of the maximum section method cease to
be valid, and a different method should be invented. In
this Letter we treat the problem of finding Tc from Eq. (1)
as a sort of an eigenvalue problem, which leads to an
implicit equation for Tc. To see this, we will consider
Gc�en, em� as the matrix elements of a matrix Ĝc, and will
write the solution of Eq. (1) for Gc in matrix notations:

Ĝc � ê1�2�Î 2 jgjP̂�21ê21�2�2jgj1̂ 1 tL̂� . (4)

Here P̂�T � � ê21�2�1̂ 2 jgj21tL̂�ê21�2, ênm �
dnm�n 1 1�2�, L̂nm � L�en 1 em�, 1̂nm � 1, and Î
is a unit matrix. Equation (4) is written in such a form
that P̂ is a symmetric matrix. Notice, that the depen-
dence of P̂ on the temperature T is not only through the
dependence of L̂ on the Matsubara frequencies, but also
through the matrix rank M � �2pTt�21. The amplitude
Gc diverges when the temperature is such that one of the
eigenvalues of the matrix P̂�T � is equal to jgj21; i.e., at
T � Tc the equation

�jgj21Î 2 P̂�Tc�� jC
 � 0 (5)

holds. Thus, the equation determining Tc can be obtained
from an eigenvalue problem. (One can also obtain an
equation for Tc by considering a BSC-like gap equation
with frequency dependent interaction vertex, 2jgj 1 tL.)
The matrix elements of P̂ � P̂0 1 P̂1 are

P̂0
nm � ��n 1 1�2� �m 1 1�2��21�2,

P̂1
nm � 2t��n 1 1�2� �m 1 1�2��21�2jgj21L�en 1 em� .

(6)

As the matrix elements P̂0
nm are factorized with respect

to n and m, all the eigenvalues of the matrix P̂0, ex-
cept one, are degenerate and equal to zero. The eigen-
vector corresponding to the nonzero eigenvalue is C0

n �
c�

p
n 1 1�2, and the equation jgj21C0

n �
P

m P̂0
nmC0

m
leads to the BCS relation for Tc0:

jgj21 � l0�Tc0�, l0�T� �
MX

m�0

1
m 1 1�2

� ln
1.14
Tt

.

(7)

Our strategy now will be to calculate the corrections to
this eigenvalue perturbatively in P̂1 (notice that P̂1 ~ t),
and in this way to get an implicit equation for Tc. Since
P̂ is symmetric we can perform this program using a
standard perturbation theory,

jgj21 � l0�T� 1 l1�T� 1 l2�T� 1 . . . . (8)

The first order term can be obtained straightforwardly,

l1 � �C0jP̂1jC0
 � 2
t

l0jgj
S2�T � ,

S2�T � �
MX

n,m�0

L�en 1 em�
�n 1 1�2� �m 1 1�2�

. (9)

The prefactor 1�l0 appears in l1 because the normalization
factor c of the eigenvector C0

n is equal to 1�
p

l0. Since all
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the eigenvalues of the operator P̂0 are degenerate except
the one under studying, it is also possible to find the
higher order corrections using only the eigenvector jC0
,
without involving other eigenvectors. We demonstrate it
here for the second order term, but a generalization to
higher orders is straightforward. In the second order

l2 �
X
ifi0

�C0jP̂1jCi
 �CijP̂1jC0

l0

�
1
l0

��C0jP̂1P̂1jC0
 2 �l1�2� , (10)
where

�C0jP̂1P̂1jC0
 �
t2

l0jgj2
S3�T � ,

S3�T � �
MX

nmk�0

L�en 1 ek�L�ek 1 em�
�n 1 1�2� �m 1 1�2� �k 1 1�2�

.

(11)

Inverting Eq. (8) perturbatively in t and having in mind
that jgjl0�Tc0� � 1, we find
ln
Tc

Tc0
� 2tS2�Tc0� 1 t2

√
S3�Tc0� 1 Tc0

≠S2�T �
≠T

É
T�Tc0

S2�Tc0�

!
1 . . . . (12)
Since Eq. (12) gives an approximation for ln�Tc�Tc0�,
while the measured quantity in experiments is Tc�Tc0, the
first two terms of the perturbative series are sufficient for
the description of the Tc suppression, if the parameter t is
not too close to a critical value where Tc vanishes. [The
parameter t should be inside the radius of convergence of
the series (12). Outside this radius the superconductivity
is completely suppressed.] In the 2D case Eq. (12)
reproduces the first two terms of the expansion of the
right-hand side of Eq. (3) in powers of ut�g2:

ln

µ
Tc

Tc0

∂
�

X̀
n�1

1
�2n 1 1�g

µ
ut
g2

∂n

. (13)

We note that expansion (13) does not contain a term
~t2�g4. There are several diagrams that give contribu-
tions to that order; however, finally they cancel each other
[18]. The main advantage of Eq. (12) is that it is not re-
stricted to a logarithmic accuracy, and can be applied to
the description of the crossover from 2D to 1D systems.

In the experiment of Xiong et al. [13] the mean field
temperature of the superconducting transition, Tc, has
been measured systematically for uniform Pb wires of
various widths. The effective strength of the disorder
characterized by R� has been controlled by the wire
thickness d. Before going to a detailed comparison
of the theory with the experiment a few remarks are
in order. The theory described above deals with the
universal mechanism related to large scale distances that
are of the order of the thermal length LT ~

p
D�T .

However, a number of other effects may also influence
Tc when the thickness d is decreased. For example,
the electron state quantization and the interaction of the
electrons with the film’s substrate can alter the parameters
of the electron liquid. These nonuniversal effects of
a short range origin are not addressed by the present
theory. In some systems, e.g., MoGe (see Ref. [3,6]),
the discussed effect, originated from the interplay of the
Coulomb interaction and disorder, is dominant, and the
theoretical curve matches the experimental data at 2D.
Unfortunately, as it is shown in Fig. 2 the theoretical
curve for Pb films does not follow the experiment. This
fact indicates that the effects of a short range physics are
not negligible here.

To minimize the role of the nonuniversal effects, and
make the comparison between the experiment and theory
possible, we proceed in the following way. For each
width the theoretical curve has been multiplied by the
function x�R�� � T2D

c �R��ex�T2D
c �R��th. This function

is the ratio between the two curves presented in Fig. 2.
Here, the basic idea is that, because the widths of the
wires are considerably larger than any microscopical
scale, the influence of the short range effects on Tc in
wires remains the same as in 2D films. In this way, we
believe, the effect of the long range physics determining
the crossover from 2D to 1D systems can be captured
by the present theory. To continue further we have to
discuss another complication. Unlike the case of 2D
films, the limit of R� ! 0 for a series of wires with a
fixed width is somewhat ambiguous. For the discussed
data, the extrapolation of Tc to the limit R� ! 0 at
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FIG. 2. Comparison between the theory (solid line) and the
experimental results [13] (dashed line) in 2D Pb films. The
fitting parameter g � 20.16 is determined from the initial
slope of Tc�R��. The deviation between the theory and
the experiment at large R� shows that the interplay of the
Coulomb interaction and disorder is not the only mechanism
influencing Tc.
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FIG. 3. Comparison between the theory (solid line) and
the experimental data [13] for wires of different width. The
short range effects are excluded assuming that they are the
same as in 2D. For each wire width, a, the theoretical
curves and the experimental data points are normalized by the
extrapolated value Tc0�a� � Tc�R� ! 0�. For all widths we
use g � 20.16 as in 2D.

a fixed width yields values that are not equal to the transi-
tion temperature in the bulk limit. (Moreover, the extrap-
olated values behave in an irregular way as a function
of the wire width.) Under this circumstance, we have
normalized the theoretical curves in such a way that in
the limit R� ! 0 the fitting curves for each width, a,
start from the extrapolated Tc0�a� � Tc�R� ! 0�. After
this normalization procedure and rescaling the theoretical
curves by x�R��, the data for wires of different widths
have been plotted together with the theoretical curves
in Fig. 3. The fitting parameter g � 20.16, determined
from the initial slope of Tc�R�� in 2D films, was the
same for all wire widths. Notice that at R� * 2000 V

the suppression of Tc for the wire of the smallest width
is about 1.5 times stronger than for the widest one. The
agreement between theory, i.e., Eq. (12), and experimen-
tal data for all wires of different widths turns out to be
very good.

To summarize, we have developed a theory that
describes the suppression of the mean field temperature
of the superconducting transition in amorphous sys-
tems. The theory is based on the consideration of the
suppression of the contact attraction due to phonons,
by the dynamically enhanced Coulomb repulsion. It
is suitable for the description of the crossover region
between 2D and 1D. By treating the problem as
an eigenvalue problem, we overcame the difficulties
occurring because of the coexistence of different sin-
194
gularities in the equation determining Tc. In order to
compare the available experimental results with the
theory, we analyzed the data in a way that minimizes
the role of nonuniversal effects of a short range origin.
We believe that the theory could be tested further with
superconducting wires fabricated from other materials,
where the initial slope of Tc�R�� is larger than in
Pb films.
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