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Spin-Charge Separation and the Kondo Effect in an Open Quantum Dot
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We study the Kondo effect in a quantum dot connected to leads by single-mode junctions at almost
perfect conductance. In this new regime, the Kondo effect develops at a temperature TK that is
sufficiently high for experiments. Unlike in the conventional case of small-conductance junctions,
G ø e2�h, in the new regime the charge discreteness of the dot is completely lost, while its spin at
T * TK remains quantized at s � 1�2 (spin-charge separation). We find the temperature and gate-
voltage dependence of the conductance through the dot in the conditions of spin-charge separation.

PACS numbers: 72.10.Fk, 73.23.Hk
The Kondo effect is one of the most studied and best
understood problems of many-body physics. Initially, the
theory was developed to explain the increase of resistivity
of a bulk metal with magnetic impurities at low tempera-
tures [1]. Soon it was realized that Kondo’s mechanism
works not only for electron scattering but also for tun-
neling through barriers with magnetic impurities [2]. A
nonperturbative theory of the Kondo effect has predicted
that the cross section of scattering off a magnetic impu-
rity in the bulk reaches the unitary limit at zero tempera-
ture [3]. Similarly, the tunneling cross section should
approach the unitary limit at low temperature and bias
[4,5] in the Kondo regime.

The Kondo problem can be discussed in the framework
of Anderson’s impurity model [6]. The three parameters
defining this model are the on-site electron repulsion
energy U, the one-electron on-site energy ´0, and the
level width G formed by hybridization of the discrete
level with the states in the bulk. The nontrivial behavior
of the conductance occurs if the level is singly occupied
and the temperature T is below the Kondo temperature
TK � �UG�1�2 exp�p´0�´0 1 U��2GU�, where ´0 , 0
is measured from the Fermi level [7].

It is hard to vary these parameters for a magnetic
impurity embedded in a host material. One has much
more control over a quantum dot attached to leads by two
adjustable junctions. Here, the role of the on-site repulsion
U is played by the charging energy EC � e2�C, where C
is the capacitance of the dot. The energy ´0 can be tuned
by varying the voltage on a gate which is capacitively
coupled to the dot. In the interval jN 2 �2n 1 1�j ,

1�2 of the dimensionless gate voltage N , the energy
´0 � EC��2n 1 1� 2 N 2 1�2� , 0, and the number
of electrons 2n 1 1 on the dot is an odd integer. The
level width is proportional to the sum of conductances G �
GL 1 GR of the left �L� and right �R� dot-lead junctions,
and can be estimated as G � �hG�8p2e2�D, where D is
the discrete energy level spacing in the dot.

The experimental search for a tunable Kondo effect
brought positive results [8] only recently. In retrospect
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it is clear why such experiments were hard to perform.
In the conventional Kondo regime, the number of elec-
trons on the dot must be an odd integer. However, the
number of electrons is quantized only if the conductance
is small, G ø e2�h, and the gate voltage N is away
from half-integer values (see, e.g., [9]). Thus, in the
case of a quantum dot, the magnitude of the negative
exponent in the above formula for TK can be estimated
as jp´0�´0 1 U��2GUj � �EC�D� �e2�hG�. Unlike an
atom, a quantum dot has a nondegenerate, dense set of
discrete levels, D ø EC . Therefore, the negative expo-
nent contains a product of two large parameters, EC�D

and e2�hG. To bring TK within the reach of a modern
low-temperature experiment, one may try smaller quan-
tum dots in order to decrease EC�D; this route obviously
has technological limitations. Another complementary
option is to increase the junction conductances, so that
GL,R comes close to 2e2�h. (This is the maximal con-
ductance of a single-mode quantum point contact used [8]
to couple the dot and the two-dimensional electron gas in
a semiconductor heterostructure). However, at such val-
ues of GL,R the discreteness of the number of electrons on
the dot is almost completely washed out [10]. Exercising
this option, hence, raises a question about the nature of
the Kondo effect in the absence of charge quantization. It
is the main question we address in this Letter.

Below we will show that the spin of a quantum dot may
remain quantized even if charge quantization is destroyed
and the average charge e�N	 is not integer. Spin-charge
separation is possible because charge and spin excitations
of the dot are controlled by two very different energies:
EC and D, respectively. The charge varies linearly with
the gate voltage, e�N	 � eN , if at least one of the
junctions is almost in the reflectionless regime, jrL,Rj ø
1, and its conductance GL,R 
 �2e2�h� �1 2 jrL,Rj

2� is
close to the conductance quantum. We will show that the
spin quantization is preserved if the reflection amplitudes
rL,R of the junctions satisfy the condition jrLj

2jrRj
2 *

D�EC . These two constraints on rL,R needed for spin-
charge separation are clearly compatible at D�EC ø 1.
© 1999 The American Physical Society
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Under the condition of spin-charge separation, the spin
state of the dot at T * TK is a doublet, if cospN , 0.
The Kondo effect (resulting in the conventional spin
screening) develops at temperatures below TK . The new
Kondo temperature we find is

TK � D

s
D

T0�N �
exp

Ω
2

T0�N �
D

æ
, (1a)

T0�N � � aEC jrLj
2jrRj

2 cos2pN . (1b)

Here a is a numerical factor. Equations (1a) and (1b)
demonstrate that in the case of weak backscattering in the
junctions, the large parameter EC�D in the Kondo tem-
perature exponent may be compensated by a small factor
~jrLj

2jrRj
2. This compensation, resulting from quantum

charge fluctuations in a dot with a dense spectrum of
discrete states, leads to an enhancement of the Kondo
temperature compared with the prediction for TK of a
single-level Anderson impurity model. Despite the modi-
fication of the Kondo temperature, strong tunneling does
not alter the universality class of the problem. The tem-
perature dependence of the conductance at T & TK is de-
scribed by a known [11] universal function F�T�TK �,

GK �T�TK ,N � �
e2

h

Ç
rR

rL

Ç2
�cospN �2F�T�TK � , (2)

with F�0� � 1. Unlike the case of weak tunneling [4,5],
the conductance (2) explicitly depends on the gate voltage.
Equations (1) and (2) were derived for an asymmetric
setup, jrRj

2 ø jrLj
2. In the special case jrLj ! 1, we

can determine the energy T0, Eq. (1b), exactly;

T0�N � � �4eC�p�ECjrRj
2 cos2pN , jrLj ! 1 ,

(3)

where C � 0.5772 . . . is the Euler constant. The above
results, apart from the detailed dependence of TK and GK

on N , remain qualitatively correct at jrLj
2 � jrRj

2 ø 1.
If cospN . 0, the spin singlet is already established
at T & D. The periodic in the N variation of the
conductance through the dot, and the universality of the
Kondo regime is preserved as long as TK ø D.

We proceed by outlining the derivation of Eqs. (1) and
(2). To see how charge fluctuations renormalize TK , we
first consider the special case jrLj ! 1 and jrRj ø 1.
The separation of charge and spin degrees of freedom
develops while the temperature is lowered in the range
EC * T * D. In this energy interval, the conventional
constant-interaction Hamiltonian Ĥ � ĤF 1 ĤC of the
Coulomb blockade model can be reduced to a one-
dimensional (1D) form [10]; spin-charge separation is
then adequately described in terms of boson represen-
tation of 1D electrons. In this representation, the free-
electron term is ĤF � Ĥ0 1 ĤR ,

Ĥ0 �
yF

2

Z `

2L
dx

X
g�r,s

∑
1
2

�=fg�2 1 2�=ug�2

∏
, (4a)

ĤR � 2
2
p

jrRjD cos�2
p

p ur�0�� cos�2
p

p us�0�� , (4b)
where yF is the Fermi velocity of the electrons in the
single-mode channel connecting the dot with the bulk, and
D is the energy bandwidth for 1D fermions. The inter-
action term is ĤC � �EC�2� �2ur�0��

p
p 2 N �2. The

canonically conjugated Bose fields satisfy the commu-
tation relations �fg0�x0�, ug�x�� � �i�2� sgn�x 2 x0�dg,g0,
where g, g0 � r, s. The operators �2e�

p
p �=ur�x� and

�2�
p

p �=us�x� are the smooth parts of the electron charge
�r� and spin �s� densities, respectively. The continuum of
those electron states outside the dot, which are capable
of passing through the junction, is mapped [10] onto
the Bose fields defined on the half-axis �0; `�. Simi-
larly, states within a finite-size dot are mapped onto the
fields defined on the interval �2L; 0� with the boundary
condition ur,s�2L� � 0, which corresponds to jrLj � 1.
The length in this effective 1D problem is related [10]
to the average density of states nd 
 1�D in the dot by
L � pyFnd , and scales proportionally to the area A of
the dot formed in a two-dimensional electron gas.

To the leading order in the reflection amplitude jrRj ø
1 and in the level spacing D�EC ø 1, the average
charge of the dot can be found by minimization of
the energy ĤC . This charge is not quantized, and,
to this order, it varies linearly with the gate voltage,
�2e�

p
p � �ur�0�	 � eN . Within the same approxima-

tion, the factor cos�2
p

p ur�0�� in (4b) at low energies
E ø EC may be replaced by its average value. This
procedure yields [10] the effective Hamiltonian Ĥs �
Ĥs

0 1 Ĥs
R for the spin mode,

Ĥs
0 �

yF

2

Z `

2L
dx

∑
1
2

�=fs�2 1 2�=us�2

∏
, (5a)

Ĥs
R � 2

∑
4eC

p3 ECD

∏1�2

jrRj cos�pN � cos�2
p

p us�0�� .

(5b)

This is a Hamiltonian of a one-mode, g � 1�2 Luttinger
liquid with a barrier at x � 0. At L ! ` (i.e., at
E ¿ D) the backscattering at the barrier, described by the
Hamiltonian Ĥs

R , is known to be a relevant perturbation
[12]: even if jrRj is small, at low energy E ! 0 the
amplitudes of transitions between the minima of the
potential of (5b) scale to zero. These minima are us�0� �p

p n, if cospN . 0, or us�0� �
p

p �n 1 1�2�, if
cospN , 0. The crossover from weak backscattering
jrR�E�j ø 1 to weak tunneling jtR�E�j ø 1 occurs at
E � T0�N � [Eq. (3)]. To describe the low-energy [E &

T0�N �] dynamics of the spin mode, it is convenient
to project out all of the states of the Luttinger liquid
which are not pinned to the minima of the potential
(5b). Transitions between various pinned states then are
described by the tunnel Hamiltonian Ĥs

0 1 Ĥxy 1 Ĥz ,
where

Ĥxy � 2
D2

2pT0�N �
cos�

p
p �fs�10� 2 fs�20��� , (6a)

Ĥz �
y

2
F

2T0�N �
=us�20�=us�10� . (6b)
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Here a discontinuity of the variable fs�x� at x � 0 is al-
lowed, and the point x � 0 is excluded from the region
of integration in Eq. (5a). The term Ĥxy , which is a sum
of two operators of finite shifts for the field us�0�, repre-
sents hops, us�0� ! us�0� 6

p
p, between pinned states.

This term is familiar from the theory of dc transport in a
Luttinger liquid [12]. However, the usual scaling argu-
ment [12] is insufficient for deriving the term (6b) and for
establishing the exact coefficients in (6a) and (6b). We
have accomplished these tasks by matching the current-
current correlation function ��Îs�t�, Îs�0��	 calculated from
(6) with the proper asymptote of the exact result which we
obtained starting with Eqs. (5) and proceeding along the
lines of Ref. [13].

At L ! ` the ground state of the spin mode is infin-
itely degenerate; different states may be labeled by the
discrete boundary values us�0�. At finite L, however, this
degeneracy is lifted due to the energy of spatial quantiza-
tion coming from the Hamiltonian (5a). If cospN . 0,
the spatial quantization entirely removes the degener-
acy, and the lowest energy corresponds to us�0� � 0
(spin state of the dot is s � 0). If cospN , 0, the
spatial quantization by itself, in the absence of tunnel-
ing, would leave the ground state doubly degenerate,
us�0� � 6

p
p�2 (spin state of the dot is s � 1�2). The

Hamiltonian (6) hybridizes the spin of the dot with the
continuum of spin excitations in the lead. The Kondo ef-
fect consists essentially of this hybridization, which ulti-
mately leads to the formation of a spin singlet in the entire
system. The energy scale, at which the hybridization oc-
curs, is the Kondo temperature of the problem at hand.

To find TK , it is convenient to return, following
Haldane [14], from the boson fields at x , 0 and x . 0
to the fermion operators x̂s and ĉs of the dot and lead,
respectively. The two parts of the Hamiltonian, (6a) and
(6b), correspond, respectively, to the in-plane and Ising
parts of the exchange interaction Ĥex,

Ĥex � JRRŜRŜd , JRR � 1�2T0�N �rdrR . (7)

Here ŜR � ĉy
s1

�RR�ss1s2ĉs2�RR� and Ŝd �
x̂y

s1
�RR�ss1s2x̂s2�RR� are the operators of spin den-

sity in the dot and in the lead, respectively, at the point
RR of their contact; rd 
 nd�A and rR are the average
densities of states in the dot and lead respectively. One
can explicitly check that the initial SU(2) symmetry of
the problem is preserved, and the exchange interaction is
isotropic. At low energies, E ø T0�N �, the dot can be
considered as being completely detached from the lead,
apart from the exchange interaction. Hence in this energy
domain the spectrum of the dot is discrete with the small-
est excitation energy �D. At energy scales below D the
system we consider is equivalent to the standard Kondo
model with exchange constant JRRA and bandwidth D.
It allows us to use the known [15] result for the Kondo
temperature, TK � D�2JRRrR�1�2 exp�21�2JRRArR�,
which leads to Eq. (1a), with energy T0�N � given by
Eq. (3).
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When deriving the Hamiltonian (6), we have neglected
the effects of spatial quantization coming from finite L.
This is justified as long as T0�N � ¿ D. The same
condition ensures the smallness of TK compared to D,
and makes the singlet Kondo polaron at cospN , 0
distinguishable from a trivial singlet state formed within
the dot at cospN . 0.

The most interesting manifestation of the Kondo effect
is the enhanced conductance through a dot with two
junctions. To consider the low-temperature conductance,
we derive a Hamiltonian that generalizes Eq. (7) to the
case of two junctions:

Ĥex � �JLLĉy
s1

�RL�x̂y
s3

�RL�x̂s4�RL�ĉs2 �RL�

1 JRRĉy
s1

�RR�x̂y
s3

�RR�x̂s4 �RR�ĉs2 �RR�

1 JLRĉy
s1

�RL�x̂y
s3

�RL�x̂s4 �RR�ĉs2 �RR��

3 ss1s2ss3s4 . (8)

The derivation of the low-energy theory goes through
stages similar to Eqs. (5) and (6). We will begin by ex-
plaining how to derive the relevant exchange constants in
the least involved case of a strongly asymmetric setup:
GL ø e2�h and jrRj ø 1. In this case the largest con-
stant, JRR ~ G0

L, exists even in the limit GL � 0, and is
defined by Eq. (7); the smallest constant, JLL ~ G2

L, is
unimportant in the calculation of the conductance; the
intermediate constant, JLR , is proportional to GL. To
find the proportionality coefficient, we calculate the con-
ductance through the dot in the lowest-order perturba-
tion theory in the Hamiltonian (8), and obtain G�T � �
�p4e2�3h�J2

LRrLrRr
2
dT2. When deriving this formula,

we also set T ¿ D, which allows us now to compare
G�T � with the exact D � 0 result [13] for the conduc-
tance of the same system. The comparison yields

J2
LR � 4�h�e2�GL�peCECT0�N �rLrRr2

d�21. (9)

At T & D, only the lowest discrete level in the dot
remains important. If the gate voltage is close to an
odd integer, cospN , 0, the level is spin-degenerate.
This way the initial problem of the dot, which has a
dense spectrum of discrete levels and is strongly coupled
to the leads, is reduced to the problem of a single-level
Kondo impurity in a tunnel junction [4,5]. Using the
found values of the exchange constants and the result
[5] for a strongly asymmetric junction �JLL ø JLR ø
JRR�, we obtain the conductance in the problem under
consideration:

GK �T�TK ,N � � �e2�h� �JLR�JRR�2F�T�TK �

� �64�p2�GLjrRj
2�cospN �2F�T�TK � .

(10)

Note that Kondo conductance (10) in the strongly asym-
metric setup is significantly smaller than the conduc-
tance quantum e2�h even at T � 0. The maximal
value of GK is substantially increased, if the asymme-
try between the junctions is reduced, and the condition
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FIG. 1. The overall temperature dependence of conductance.
The estimates of the crossover temperatures and the two
characteristic values of the conductance, GK 
 GK �0,N � and
Gel, are given in the text.

GL ø e2�h is lifted. To show this, we further general-
ize the above results to include the experimentally impor-
tant case jrRj ø jrLj ø 1. As in the case of a single
strong junction considered above, the backscattering in
the junctions becomes increasingly effective at low elec-
tron energies. Initially, at energies below EC , the reflec-
tion amplitudes grow independently of each other [13]
as jrL,R�E�j � jrL,Rj �EC�E�1�4. Upon reducing the en-
ergy scale, the weaker junction reaches the crossover re-
gion first: at E � T1 
 ECjrLj

4, the backscattering in this
junction becomes significant, jrL�E�j � 1.

To consider conductance at temperatures T ø T1, we
can now formulate an effective Hamiltonian, which acts
within the narrow energy band T1 and describes weak
reflection in the right junction, jrR�T1�j � jrR�rLj, and
strong reflection in the left junction, jrL�T1�j � 1. Both
junctions eventually cross over into the weak tunneling
regime at sufficiently low temperatures. Replacing EC

by the bandwidth T1 and jrRj by jrR�rLj in Eq. (3), we
find Eq. (1b) for the new crossover temperature. Be-
low it, the exchange Hamiltonian (8) is applicable. The
largest exchange constant JRR is independent of jrLj in the
leading approximation; it is still defined by Eq. (7) with
T0�N � from Eq. (1b). To find the new value of JLR , we
replace EC ! T1, GL ! �e2�h� �1 2 jrL�T1�j2� � e2�h,
and use Eq. (1b) for T0�N � in Eq. (9); the result is J2

LR �
�E2

CjrLj
6jrRj

2rLrRr
2
d�21. Substituting the exchange con-

stants JRR and JLR in Eq. (10), we arrive at Eq. (2).
We finally discuss the overall temperature dependence

of the conductance (see Fig. 1). In this discussion, we use
the above results for the Kondo regime, and the results of
Refs. [13,16] for co-tunneling, generalized properly onto
the case jrRj ø jrLj ø 1. The conductance decreases
slowly [13], as the temperature is reduced from EC to T1.
At lower temperature, the leading mechanism of trans-
port is inelastic co-tunneling, which yields G � T�T1
and G � T2�T1T0�N � at T above and below T0�N �,
respectively. At yet lower temperatures, the main con-
tribution to the conductance G�T � is provided by elastic
co-tunneling, Gel � �D�T1� ln�T1�D�. The crossover be-
tween the two co-tunneling mechanisms occurs at T� �
p
T0�N �D ln�T1�D�. It is instructive to compare Gel with

the zero-temperature Kondo conductance (2). Taking into
account the definition of T1, we see that the Kondo mech-
anism dominates if T0�N ��D * ln�EC jrLj

4�D�. This
condition simultaneously ensures the smallness of the
Kondo temperature compared to the level spacing, so that
the Kondo singlet state remains distinct.

In conclusion, we found that the spin of a quantum dot
may remain quantized, even if the quantization of charge is
destroyed by strong dot-lead tunneling. In the spin-doublet
state, the Kondo effect develops at low temperature, yield-
ing a nonmonotonous temperature dependence of the
conductance. We found that the Kondo temperature is
significantly enhanced by charge fluctuations, compared
to the standard case of weak dot-lead tunneling.
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