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Charge Effects and Josephson Plasma Resonance on Planar Defects
in High-Temperature Superconductors
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We show that planar crystalline defects parallel to the ab planes in high-Tc superconductors (HTS)
give rise to a localized Josephson plasma mode formed by a collective Coulomb interaction of interlayer
junctions. This results in a pronounced satellite line in the real part of the complex resistivity R�v�,
whose position and amplitude depend on the critical current density J0 and on the parameters of the
charge interlayer coupling. The narrowness of the zero-field plasma peak in ReR�v� enables one to
probe the pairing symmetry of the interplane coupling by extracting the angular dependence of J0�u�
across twist grain boundaries in HTS bicrystals.

PACS numbers: 74.60.Ge
Weak Josephson coupling of the Cu-O planes in high-
temperature superconductors (HTS) can manifest itself in
steps on the voltage-current characteristics along the c axis
[1] and in a weakly damped Josephson plasma mode with
the frequency vp smaller than the superconducting gap
D [2–4]. The plasma mode gives rise to a narrow peak
in the real part of the complex resistance R�v� at low
temperatures T for which the quasiparticle damping is
suppressed. A sharp peak in ReR�v, H, T � has also been
observed on Bi-2212 single crystals in a dc magnetic field
H [5–7] when the Josephson plasma line is broadened
due to vortices. In this case the dependence ReR�H� at
high fields carries information about the vortex correlation
function in the liquid state [8].

In this paper, we show that the narrowness of the
zero-field Josephson plasma line and its sensitivity to the
local interlayer coupling could also make the Josephson
plasma resonance a very useful technique for studying
planar crystalline defects parallel to the ab planes, such
as twist grain boundaries (GB) and stalking faults in Bi-
2212 crystals. Because of the short coherence length
along the c axis, planar defects can strongly reduce the
interlayer supercurrent density, Jc, affecting, for example,
the structure of Josephson vortices parallel to the ab planes
[9]. Therefore, understanding the nature of interlayer
coupling also requires a nondestructive way of identifying
and characterizing planar defects in order to separate their
contribution from intrinsic mechanisms.

Current transport along the c axis can be strongly im-
peded by planar defects, which is a serious problem for
power applications of HTS [10]. If the c-axis current den-
sity J exceeds the supercurrent density J0 across the de-
fect, it switches into a resistive state and also induces local
voltages Vn on neighboring layers with Jc . J0 coupled
by the screened Coulomb interaction [11]. For J0 � Jc,
transport measurements may therefore not reveal the true
J0, due to the admixture of quasiparticle currents induced
on other layers with Jc . J0. For instance, recent resis-
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tive measurements [12] indicated that twist GBs did not
noticeably reduce the apparent interlayer critical current
density J0�u� which showed weaker dependence on the
misorientation angle u between the adjacent crystallites
than that expected from the d-wave x2-y2 pairing symme-
try. This behavior of twist GBs is also in sharp contrast
with in-plane tilt GBs, which exhibit the rapid exponen-
tial decrease Jc ~ exp�2u�u0�, u0 � 4± 5± [13] due to
charging effects and the proximity of HTS materials to
the metal-insulator transition [14,15]. Understanding the
mechanisms of current transport through twist GBs and
extracting the intrinsic J0�u� dependence is therefore very
important for clarifying the symmetry of the interplane su-
perconducting coupling. We show that the narrowness of
the Josephson plasma line in principle enables one to cir-
cumvent the limitation of resistive measurements at J0 �
Jc and to reveal a true J0 of a single GB coupled with other
interlayer junctions.

We consider a layered HTS in ac magnetic field parallel
to the ab plane and zero dc magnetic field H. In this case
vortices are absent, and the ac electric field Ev is induced
only along the c axis. We also assume that a c-axis dc
bias current density J is applied, which enables one to
control the Josephson plasma frequency vp by varying J:
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Here e and d are the dielectric constant and the thickness
of the block layer between the superconducting layers, f0
is the flux quantum, and c is the speed of light.

The electrodynamics of a layered HTS is described
by coupled nonlinear equations for the phase differences
wn�t� between the (n 1 1)th and nth superconducting lay-
ers, where 2N , 2n , N , and N is the total number of
layers. The coupling between different interlayer junctions
can be due to magnetic interaction of supercurrents flow-
ing along different layers [4], Coulomb interaction due to
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charge redistribution between the layers [11], or current-
induced particle-hole asymmetry [16]. In this paper we
take into account only the Coulomb coupling of the in-
terlayer junctions and neglect their magnetic interaction,
since no currents flow along the layers at H � 0. The
particle-hole asymmetry can also be neglected for layered
HTS with very high c-axis resistivity characteristic of Bi-
2212 crystals [16]. We consider linear response to a small
ac signal and calculate the complex resistance R�v� for a
stack of N layers which contains one interlayer junction
with reduced critical current density J0 , Jc. The planar
defect gives rise to the localized plasma mode with the fre-
quency v0 smaller than the bulk vp . The localized mode
is formed by a collective Coulomb interaction of many
��10 102� interlayer junctions near the defect, so the am-
plitude of the satellite peak in ReR�v0� is much higher than
R�v0� � R�vp��N for decoupled junctions. In this case
by measuring the satellite peak, one can extract J0 and the
in-plane screening length rD , which determines the charge
coupling of the ab planes [11]. Besides, rD is a key pa-
rameter of the strong electric field effects in HTS, which
contribute to the suppression of D on tilt GBs and current
transport through GBs in the ab plane [14,15].

The equations for wn�t� for a stack of coupled Josephson
junctions have the form [11]

Cn
�Vn 1 GnVn 1 Jcn sinwn � J�t� , (2)

Vn 2 a�Vn11 1 Vn21 2 2Vn� � h̄ �wn�2e , (3)

where J�t� is the external current density perpendicular
to the layers, Jcn is the tunneling supercurrent density,
Vn is the local voltage between the n 1 1 and nth layers
of thickness s spaced by d, a � r2

D�sd is the charge
coupling parameter, C � e�4pd is the specific interlayer
capacitance, G is the interlayer quasiparticle conductance
per unit area, and the overdot denotes time derivative. For
s � 3 Å, d � 12 Å, rD � 5 10 Å [15], we obtain a �
1 3, which indicates strong interlayer Coulomb coupling
in HTS.

Now let Jcn in Eq. (2) have the same value Jc for all
n, but the defect layer with n � 0, for which J0 , Jc,
C0 fi C, and G0 fi G. We consider a small harmonic ac
signal Jv exp�ivt� superimposed on a dc current J flow-
ing across the stack, J�t� � J 1 Jveivt , for jJvj ø J .
Then wn � sin21�J�Jcn� 1 dwn�v�eivt, and Eq. (2) can
be linearized with respect to the induced phase perturba-
tions, dwn � �Jv 2 �Gn 1 ivCn�Vn��

p
J2

cn 2 J2. Sub-
stituting this into Eq. (3), we obtain the following equation
for the Fourier components Vn�v�:

gVn 2 a�Vn11 1 Vn21 2 2Vn� � ifb 1 ifFdn0 ,
(4)

where g�v� � 1 2 f2 1 igf, f � v�vp , b �
h̄vpJv�2e

p
J2

c 2 J2, g � h̄vpG�2e
p

J2
c 2 J2. The

parameter F, which describes the influence of the planar
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defect, is given by

F � h�b 2 �if 1 g�V0� , (5)

h �

s
J2

c 2 J2

J2
0 2 J2

2 1 . (6)

Here we assumed for simplicity that Cn and Gn do not
change on the defect layer; however, the results can be
easily generalized to the case G fi G0 and C fi C0. The
resistance R�v� is determined by even modes Vn � V2n,
for which the solution of Eq. (4) has the form

Vn� f� �
ifb

g

"
1 1

hajnjp
g2 1 4ag 2 hf� f 2 ig�

#
,

(7)

where a � 1 1 �g 2
p

g2 1 4ag ��2a. The second
term in the brackets in Eq. (7) describes the localized
plasma mode yn � Vn 2 V

�0�
n near GB, where V

�0�
n �

ifb�g are induced ac voltages in a uniform sample. If
v is close to vp , we have g�v� ø 1, and a � 1 2p

g�a for a � 1. In this case the localized voltage
perturbation yn � y0ajnj decays on the correlation length
L � �s 1 d�

p
a�g away from the defect (Fig. 1). For

g � 0, L is given by

L � �d 1 s�

vuut av2
p

v2
p 2 v2 . (8)

Near the bulk resonance �vp 2 v ø vp�, the decay
length L is much larger than the interlayer spacing d. Fur-
thermore, L increases as the charge coupling parameter
a and the frequency v increase, approaching L � �d 1

s�
p

a�g ¿ d for v ! vp . The fact that L ¿ d 1 s in-
dicates that the localized mode is formed by the Coulomb
coupling of many layers (see Fig. 1).

FIG. 1. Localized voltage distribution yn�y0 � Re�ajnj� near
the defect for v � v0, h � 0.4, a � 3, and g � 0.002.
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Now we calculate the complex resistance R�v� �P
n Vn�Iv , where Iv is the Fourier component of the ac

current. Assuming D � N�s 1 d� ¿ 2L, and summing
up Eq. (4) over n, we obtain that

P
n Vn � if�Nb 1

F��g, since the contribution from the terms proportional
to a cancels out with an accuracy to exp�2D�2L� ø 1,
where D is the sample thickness. Substituting F and V0
from Eqs. (5) and (7) into R � if�Nb 1 F��gIv , we
obtain

R�v�
R0

�
if
g

"
N 1

h

g 2 hf� f 2 ig��
p

1 1 4a�g

#
,

(9)

where R0 � h̄vp�2e
p

I2
c 2 I2. The first term in the

brackets corresponds to a uniform sample, and the second
term proportional to h describes the contribution of the
localized plasma mode near GB. In Eq. (9) we took into
account the single defect in the center, but neglected the
influence of the sample surfaces, which do not cause any
new localized plasma modes at v � vp [17,18].

Shown in Fig. 2 is the dissipative part ReR�v�, which
has peaks at vp and v0 determined by the poles in R�v�.
Here the bulk plasma frequency, v � vp�1 1 ig�2�, is a
solution of g�v� � 0. The frequency v0 of the localized
plasma mode satisfies the equation

g2 1 4ag � h2f2� f 2 ig�2. (10)

Equation (10) reduces to the quadratic equation g2 1

4ag � h2�1 2 g�2, whose solution, g0 . 0, determines
the eigenfrequency, v0�vp � �1 2 g0 2 g2�4�1�2 1

ig�2. For h2 ø 4a, and g ø 1, we obtain g0 �
h2�4a ø 1, and

v0�vp � 1 2 h2�8a 1 ig�2 . (11)

For a � 3, J0 � 0.5Jc, and J � 0, we get vp 2 v0 �
4 3 1022vp . Thus, if J0 is not very different from Jc,
the synchronization of many layers near the defect layer
gives rise to the eigenfrequency v0, which is much closer
to vp , than one could expect from Eq. (1). For J ! J0,
h�J� diverges, and v0 vanishes at h ! ` and g � 0 as

v0�vp � �1 1 4a�1�4�
p

h . (12)

The case h ¿ 1 also models the sample surface, for
which J0 ! 0 and the localized plasma mode is ab-
sent [17]. As follows from Fig. 2, the strong Coulomb
coupling can make the amplitude of the satellite peak,
R�v0� � �2L�D�R�vp�, quite noticeable. For instance,
Eqs. (8) and (11) give 2L�v0��D � 4a�hN � 0.3 0.03
for gvp ø vp 2 v0, a � 3, h � 0.1 1, and N � 400,
which corresponds to D � 1 mm for Bi-2212.

As the damping parameter g increases, the plasma lines
broaden and overlap; thus the satellite peak can be re-
solved only for weak damping, g , gc � Dv�vp �
h2�8a � 4 3 1022 for a � 3, h � 0.5. Estimates of
FIG. 2. The effect of dissipation (a) and distribution of local
J0 (b) on the normalized ReR�v��R�vp�, calculated from
Eqs. (9) and (16). Figure 2a corresponds to a � 3, h � 0.5,
N � 400, G � 0, and different g � 0.001 (bottom curve),
0.002, 0.004, and 0.006 (top curve). (b) corresponds to
g � 0.004, N � 200, a � 3, and different distribution widths
G � 0 (top curve), 0.01, 0.03, and 0.05 (bottom curve).

g for YBa2Cu3O7 give g � 0.1 near Tc [1]; however,
gc decreases at lower T due to the decrease of density
of thermally activated quasiparticles and the c-axis con-
ductivity. For instance, recent measurements of R�v� on
Bi-2212 crystals at H � 0 gave the Josephson plasma
linewidth dvp , 1022vp [19], which would be suffi-
cient to resolve the satellite plasma line, whose relative
amplitude R�v0� � �2L�D�R�vp� can also be increased
by decreasing the sample thickness. For instance, for
smaller D, say D � 0.5 mm, N � 200, the satellite peak
in ReR�v� becomes more pronounced (Fig. 2b) and can
be resolved for larger g than those in Fig. 2a.

By measuring v0 for different J, one can extract J0
across the defect layer and the parameter a. Using
Eqs. (9) and (11), we can express a and J0 in terms of the
observed Dv�vp for J � 0 and for J ø J0 as follows:

a �

√
Jc

J0
2 1

!2
vp�0�

8Dv�0�
, (13)
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where Dv�J� � vp�J� 2 v0�J� ø vp�J�, and Jc and G
can be obtained independently from the amplitude and
the width of the bulk Josephson plasma line. Notice that
extracting G may be more involved, since the plasma
linewidth in HTS crystals can be due to both the quasi-
particle damping and the distribution of the interlayer
coupling strengths [20] because of long-range chemical
inhomogeneities and strains, or inhomogeneous magneti-
zation currents along the c axis at H . 0. For an array
of planar defects with different J0, the satellite peaks in
ReR�v� overlap, and the averaged resistance

R̄�v� �
Z `

0
R�v, J0�P�J0� dJ0 (15)

can be expressed via the distribution function P�J0�, if the
mean spacing between the defects is larger than L. Equa-
tion (15) also describes a single GB with variations of J0
along GB on macroscopic scales ¿L. As an example, we
consider the Lorentzian function P0 � G��x2 1 G2�p,
where x � �J0 2 J̄0��J̄0, and G quantifies the width of the
distribution of local J0 around the mean J̄0. For a narrow
distribution, G ø 1, which does not completely wash out
the satellite peak, we can expand h�J0� � h 2 �h 1 1�x
in Eqs. (6) and (9), assuming that J � 0, and h̄ corre-
sponds to J0 � J̄0. Near the plasma resonance, v � vp ,
the main contribution in Eq. (15) comes from the region
jxj ø 1, where we can extend the integration limits to
2` , x , ` and calculate R̄ by contour integration in
the upper complex half-plane. As a result, R̄�v� reduces
to Eq. (9) with h replaced by

heff � h̄ 2 i�1 1 h̄�G . (16)

The evolution of ReR�v� with G is shown in Fig. 2b. The
amplitude of the satellite peak, ReR�v0� � �4a�h�2R0�
�1 1 h�G, decreases with G, if G ¿ Gc � g�2a 1

h2��h�1 1 h� � 8.3g, for a � 3 and h � 0.5. There-
fore, the single satellite peak in ReR�v�, which carries
the information about the superconducting and charge
coupling along the c axis, could be resolved in high
quality thin Bi-2212 bicrystals, for which the parameters
of the twist GB are well quantified and controlled.

In conclusion, measuring the satellite plasma peak in
ReR�v� at v0 , vp enables one to extract the charge cou-
pling parameter a and the supercurrent density J0 across
planar defects parallel to the ab planes. This may provide
a sensitive tool for probing the pairing symmetry of the
interlayer coupling by measuring the angular dependence
J0�u� for twist grain boundaries in Bi-2212 bicrystals. If
186
a is independent of u, the behavior of J0�u� can be ob-
tained directly from Eq. (13).
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