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New Quantum Phase between the Fermi Glass and the Wigner Crystal in Two Dimensions
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For intermediate Coulomb energy to Fermi energy ratios rs, spinless fermions in a random potential
form a new quantum phase which is neither a Fermi glass, nor a Wigner crystal. Studying small
clusters, we show that this phase gives rise to an ordered flow of enhanced persistent currents for
disorder strength and ratios rs, where a metallic phase has been recently observed in two dimensions.

PACS numbers: 71.30.+h, 72.15.Rn
An important parameter for a system of charged par-
ticles is the Coulomb energy to Fermi energy ratio rs. In a
disordered two-dimensional system, the ground state is ob-
vious in two limits. For large rs, the charges form a kind of
pinned Wigner crystal, the Coulomb repulsion being domi-
nant over the kinetic energy and the disorder. For small
rs, the interaction becomes negligible and the ground state
is a Fermi glass with localized one electron states. There
is no theory for intermediate rs, while many transport mea-
surements following the pioneering works of Kravchenko
et al. [1] and made with electron and hole gases give evi-
dence of an intermediate metallic phase in two dimensions,
observed [2], for instance, when 6 , rs , 9 for a hole
gas in GaAs heterostructures. A simple model of spin-
less fermions with Coulomb repulsion in small disordered
2D clusters exhibits a new ground state characterized by
an ordered flow of enhanced persistent currents for those
values of rs. In a given cluster, as we turn on the interac-
tion, the Fermi ground state can be followed from rs � 0
up to a first level crossing. A second crossing occurs at
a larger threshold after which the ground state can be fol-
lowed to the limit rs ! `. There is then an intermedi-
ate state between the two crossings. In small clusters, the
location of the crossings depends on the considered po-
tentials, but a study over the statistical ensemble of the
currents supported by the ground state gives us two well-
defined values rF

s and rW
s : Mapping the system on a torus

threaded by an Aharonov-Bohm flux, we denote, respec-
tively, Il and It the total longitudinal (direction enclosing
the flux) and transverse parts of the driven current. One
finds for their typical amplitudes jItj � exp2�rs�rF

s � and
Il � exp2�rs�rW

s � with rF
s , rW

s . Below rF
s , the flux

gives rise to a glass of local currents and the sign of Il can
be diamagnetic or paramagnetic, depending on the random
potentials. Above rF

s , the transverse current is suppressed
while an ordered flow of longitudinal currents persists up
to rW

s , where charge crystallization occurs. The sign of
Il can be paramagnetic or diamagnetic, depending on the
filling factor (as for the Wigner crystal), but does not de-
pend on the random potentials (in contrast to the Fermi
glass). One finds rF

s and rW
s in agreement with the values

delimiting the new metallic phase when 0.3 , kFl , 3,
kF and l denoting the Fermi wave vector and the elastic
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mean free path, respectively. For kFl $ 1, Il is strongly
increased between rF

s and rW
s . This suggests that the inter-

mediate phase of our model is related to the new metal ob-
served in two dimensions by transport measurement which
we shortly review.

In exceptionally clean GaAs�AlGaAs heterostructures,
an insulator-metal transition (IMT) of a hole gas results
[3] from an increase of the hole density induced by a gate.
This occurs at rs � 35, in close agreement with rW

s �
37, where charge crystallization takes place according to
Monte Carlo calculations [4], and makes highly plausible
that the observed IMT comes from the quantum melting of
a pinned Wigner crystal. The values of rs where an IMT
has been previously seen in various systems (Si-MOSFET,
Si-Ge, GaAS) are given in Ref. [3], corresponding to dif-
ferent degrees of disorder (measured by the elastic scatter-
ing time t). Those rs drop quickly from 35 to a constant
value rs � 8 10 when t becomes smaller. This is again
compatible with rW

s � 7.5 given by Monte Carlo calcula-
tions [5] for a solid-fluid transition in the presence of dis-
order. If the observed IMT is due to interactions, it might
be expected that this metallic phase will cease to exist as
the carrier density is further increased. This is indeed the
case [2] for a hole gas in GaAs heterostructures at rs � 6,
where an insulating state appears, characteristic of a Fermi
glass with electron-electron interactions.

In this paper, we take advantage of exact diagonalization
techniques for large sparse matrices (Lanczos method),
where tiny changes of energy can be precisely studied.
This restricts us to small clusters and low filling factors.
Fortunately, the dependence on particle number has proved
to be remarkably weak in many cases. In the clean limit,
calculations [6] with 6–8 particles give the condensation
of the electron gas into an incompressible quantum fluid
when a magnetic field is applied. Pikus and Efros [4]
have obtained rW

s � 35 from 6 3 6 clusters with six par-
ticles, close to rW

s � 37 obtained by Tanatar and Ceperley
for the thermodynamic limit [4]. In the disordered limit
which we consider, there is another reason for expecting
weak finite size effects. When the energy levels do not
depend very much on the boundary conditions, the periodic
repetition of the same cluster cannot drastically differ from
the thermodynamic limit obtained from an ensemble of
© 1999 The American Physical Society
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different clusters. This usual localization criterion applies
for insulators such as the Fermi glass or the pinned Wigner
crystal. Small cluster approximations should then be
sufficient for small and large rs. This explains why the
critical factors rs which we will discuss are close to the
thermodynamic limit given by the experiments. Finite
size effects can be important only if one has a metal for
intermediate rs.

We consider a simple model of N � 4 Coulomb inter-
acting spinless fermions in a random potential defined on a
square lattice with L2 � 36 sites. The Hamiltonian reads

H � 2t
X
�i,j�

c
y
i cj 1

X
i

yini 1 U
X
ifij

ninj

2rij
. (1)

c
y
i �ci� creates (destroys) an electron in the site i, t is the

strength of the hopping terms between nearest neighbors
(kinetic energy), and rij is the interparticle distance for a
2D torus. The random potential yi of the site i with occu-
pation number ni � c

y
i ci is taken from a box distribution

of width W . The interaction strength U yields a Coulomb
energy to Fermi energy ratio rs � U��2t

p
pne � for a fill-

ing factor ne � N�L2. The disorder to hopping energy
ratio W�t is chosen such that kFl takes values where the
IMT has been observed [1–3]. A Fermi golden rule ap-
proximation for t gives [7] kFl � 192pne�t�W�2. One
has ne � 1�9, W�t � 5, 10, and 15 corresponding to
kFl � 2.7, 0.67, and 0.3, respectively.

The boundary conditions are always taken periodic in
the transverse y direction, such that the system becomes a
torus enclosing an Aharonov-Bohm flux f in the longitudi-
nal x direction. Imposing f � p�2 (f � p corresponds
to antiperiodic condition), one drives a persistent current of
total longitudinal and transverse components given by

Il � 2
≠E�f�

≠f

Ç
f�p�2

�

P
i Il

i

L
(2)

and It �
P

i It
i �L, respectively. The local current Il

i flow-
ing at the site i in the longitudinal direction is defined
by Il

i � 2 Im��C0jc
y
ix11,iy

cix ,iy jC0�� and by a corresponding
expression for It

i . The response is paramagnetic if Il . 0
and diamagnetic if Il , 0. We begin by showing behav-
iors characteristic of a single cluster when rs varies.

Figure 1 corresponds to kfl # 1 �W�t � 15�. Looking
at the low energy part of the spectrum, one can see that,
as we gradually turn on the interaction, classification of
the levels remains invariant up to first avoided crossings,
where a Landau theory of the Fermi glass is certainly no
longer possible. Looking at the electronic density ri �
�C0jnijC0� of the ground state jC0�, we have checked that
it is mainly maximum in the minima of the site potentials
for the Fermi glass. After the second avoided crossing,
ri is negligible except for four sites forming a lattice of
charges as close as possible to the Wigner crystal triangular
network in the imposed square lattice. The degeneracy
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FIG. 1. Behavior of a single cluster for kFl # 1 �W�t � 15�
as a function of rs. Top: low energy spectrum (a 1.9rs term has
been subtracted); arrows show avoided crossings between the
ground state and the first excited state. Bottom left: jumps of g
at the second crossing where the ground state (solid diamonds)
and the first excited state (open diamonds) are interchanged.
Bottom right: longitudinal current Il (left scale, open circles)
and number of occupied sites js (right scale, solid circles).

of the crystal is removed by the disorder, the array being
pinned in four sites of favorable energies.

For the same cluster, we have calculated C�r� � N21 3P
i riri2r and the parameter g � maxrC�r� 2 minrC�r�

used by Pikus and Efros [4] for characterizing the melting
of the crystal. g � 1 for a crystal and 0 for a liquid. Cal-
culated for the ground state and the first excited state, g�rs�
allows us to identify the second crossing with the melting
of the crystal. Moreover, one can see that the crystal be-
comes unstable in the intermediate phase, while the ground
state is related to the first excitation of the crystal (Fig. 1,
bottom left). Around the crossings, the longitudinal cur-
rent Il and the participation ratio js � N2�

P
i r

2
i �21 of the

ground state (i.e., of the number of sites that it occupies)
are enhanced (Fig. 1, bottom right). The general picture
is somewhat reminiscent of strongly disordered chains [8],
where level crossings associated with charge reorganiza-
tions of the ground state are accompanied by enhancements
of the persistent currents. Figure 1 is representative of the
ensemble, with the restriction that the location of the cross-
ings fluctuates from one sample to another as well as the
sign (paramagnetic or diamagnetic) of Il below the first
crossing, in contrast to 1D.

Figure 2 corresponds to kfl $ 1 �W�t � 5�. The pre-
vious level crossings are now almost suppressed by a
stronger level repulsion and charge crystallization occurs
more continuously. There is instead a broad enhancement
of Il which, in contrast to Fig. 1, is not accompanied by
a corresponding increase of js, which smoothly decreases
from 20 of the 36 possible sites down to 4 when charge
1827
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FIG. 2. Behavior of a single cluster for kFl $ 1 �W�t � 5�
as a function of rs. Left coordinates: currents Il (open circles)
and It (triangles). Right coordinates: js (solid circles).

crystallization becomes perfect. A transition of the per-
sistent current, from a disordered array of loops towards
an ordered flow as rs increases, has been noticed [9] by
Berkovits and Avishai. To illustrate this phenomenon, the
total transverse current It is shown in Fig. 2. One can see
that It is suppressed at rs � 5 while Il continues to in-
crease up to rs � 15. We have checked that a disordered
array of loops persists up to rs � 5, followed by an or-
dered flow of enhanced longitudinal currents persisting up
to rs � 15. The disordered array of loops gives rise to
a diamagnetic or paramagnetic current Il , depending on
the microscopic disorder. The ordered flow gives rise to a
paramagnetic Il . However, Coulomb repulsions do not al-
ways yield a paramagnetic response. For instance, 4 3 6
clusters with N � 6 always become diamagnetic at large
rs. One can only conclude that the sign of the response
in 2D does not depend on the random potential when rs is
sufficient for suppressing It . In 1D, Legett’s theorem [10]
states that the sign of Il depends on the parity of N only,
for all disorder and interaction strength. The proof is based
on the nature of “nonsymmetry dictated nodal surfaces,”
which is trivial in 1D, but which has a quite complicated
topology in higher dimensions. It is likely that such a theo-
rem could be extended in 2D when the transverse flow is
suppressed.

We now present a statistical study of an ensemble of 103

clusters for W�t � 5, 10, and 15. At the top left of Fig. 3,
one can see an increase of the mean Il by about 1 order of
magnitude when rs � 7 for W�t � 5. We note that the
persistent currents [11] measured in an ensemble of meso-
scopic rings are typically higher by a similar amount than
the theoretical prediction neglecting the interactions. At
the right top of Fig. 3, the fraction of diamagnetic clus-
ters is given as a function of rs, showing that the enhance-
ment of the mean is partially related to the suppression of
1828
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FIG. 3. Statistical study of an ensemble of clusters for W�t �
5 (circles), 10 (squares), and 15 (triangles) as a function of
rs. Top left: mean value �Il� of the longitudinal current.
Top right: fraction Cd of diamagnetic samples. Middle left:
distribution of the logarithms of the paramagnetic current Il,p
at rs � 1.7 and W�t � 15. Middle right: mean number �js�
of sites occupied by the ground state. Bottom left: longitudinal
paramagnetic (open symbols) and diamagnetic (solid symbols)
currents. Bottom right: transverse currents. The straight lines
are exponential fits giving rF

s and rW
s values shown in Fig. 4.

the diamagnetic currents. This suppression is faster for
weak disorders. The mean number js of sites occupied
by the ground state is given at the middle right of Fig. 3,
showing a negligible increase when W�t � 15 at low rs

and a regular decay otherwise. The paramagnetic Il,p and
diamagnetic Il,d longitudinal currents and jItj have log-
normal distributions for all values of rs when W�t $ 5.
The stronger the disorder, the better the log-normal shape
of the distribution (see middle left of Fig. 3). The aver-
age of the logarithms gives the typical values shown in
the bottom part of Fig. 3. On the left, the longitudinal
currents Il are given, the diamagnetic responses Il,d (solid
symbols) being separated from the paramagnetic responses
Il,p (open symbols), while the transverse currents It are
given at the right side. The log averages exponentially de-
cay as Il,d ~ jItj ~ exp2�rs�rF

s � and Il,p ~ exp2�rs�rW
s �

when rs is large enough. The variances of log jItj and
logIl increase as rs�rF

s and rs�rW
s above rF

s and rW
s , re-

spectively. The values of rF
s and rW

s extracted from the
exponential fits (straight lines in Fig. 3) are given in Fig. 4,
where a sketch of the phase diagram is proposed.

Figures 3 and 4 show that a simple model of spinless
fermions can account for the critical carrier densities and
disorder strengths where the IMT occurs. The comparison
between the curve rs�t� given in Ref. [3] (summarizing the
factors rs where the IMT has been observed) and the curve
rW

s �kFl� of Fig. 4 (characterizing the suppression of Il) is
striking. The value rs � 6, where the reentry has been
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FIG. 4. Proposed phase diagram for 2D spinless fermions in
a random potential. rW

s (solid circles) and rF
s (open circles)

obtained from Fig. 3 bottom.

observed in Ref. [2], is compatible with the curve rF
s �kFl�

characterizing the suppression of It . The spin degrees of
freedom are not included in our model, the orbital part of
the wave function being totally antisymmetrized. This re-
striction is quite important for short range screened interac-
tions, but is certainly less severe for long range interactions
and low densities. However, there is much experimental
evidence [12] that spin effects play a role. But even for 2D
spinless fermions, we conclude that there is a new quan-
tum phase between the Fermi glass and the Wigner crystal,
identified by a plastic flow of currents without charge crys-
tallization. Small cluster studies do not allow us to know
with certainty if the identified rs factors correspond to real
transitions delimiting a metallic phase, or to some sim-
pler crossover phenomena. However, a recent extension of
finite size scaling [13] to the many body ground state (as-
suming certain unavoidable approximations) strongly sug-
gests that a real transition towards a metallic phase occurs
at the first threshold �rs � 4�. We have not indicated in the
proposed phase diagram the difference between kFl $ 1
(where Il has a strong enhancement) and kFl # 1 (where
Il persists up to rW

s without noticeable enhancement). A
finite size scaling study will again be necessary for under-
standing if a transition can be driven by an increase of kFl
at intermediary rs. js and Il convey similar information
when kFl , 1 while the increase of Il is accompanied by a
decrease of js when kFl . 1. This suggests that transport
for intermediary rs results more from a collective motion
of charges than from a delocalization of individual charges.
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