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A procedure is introduced for deriving a coarse-grained dissipative particle dynamics from molec
dynamics. The rules of the dissipative particle dynamics are derived from the underlying molec
interactions, and a Langevin equation is obtained that describes the forces experienced by the dissi
particles and specifies the associated canonical Gibbs distribution for the system.
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Hydrodynamic simulations of complex fluids remain
major challenge in most cases of interest. Such flu
include particulate and colloidal suspensions, polyme
liquids, emulsions and other self-assembling amphiph
fluids, and fluids where Brownian motion is importan
For such fluids it is often necessary to base the mod
ing on a microscopic picture of the system, thus workin
from the bottom upwards. Over the last decade seve
such “bottom up” strategies have been introduced. H
drodynamic lattice gases [1], which model the fluid as
discrete set of particles, represent a computationally
ficient discretization of the more conventional molecul
dynamics (MD) [2].

A recent contribution to the family of bottom-up
approaches is the dissipative particle dynamics (DP
method introduced by Koelman and Hoogerbrugge
1992 [3]. Applications of the technique include colloida
suspensions [4], polymer solutions [5], and binary im
miscible fluids [6]. For specific applications where com
parison is possible, this model is orders of magnitu
faster than MD [7].

The basic components of DPD are particles that a
thought to represent mesoscopic elements of the und
lying molecular fluid. These dissipative particles the
evolve just as MD particles but with different inter
particle forces: Since the DPD particles are pictured
having internal degrees of freedom, the forces betwe
them have both a fluctuating and a dissipative comp
nent in addition to the conservative forces that are pres
already at the MD level. Nevertheless, momentum co
servation along with mass conservation produce hydro
namic behavior at the macroscopic level.

Dissipative particle dynamics has been demonstrated
connect correctly to the macroscopic continuum theo
that is, for a one-component DPD fluid, it is possible
derive the Navier-Stokes equations and to compute
viscosity in the large scale limit [8,9]. However, thus fa
no attempt has been made to link DPD to the underlyi
microscopic dynamics. This is the purpose of the pres
Letter. We define the dissipative particles (DP) b
appropriate weight functions that sample a portion
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the underlying conservative MD particles, and we deriv
the forces between the DP’s from the hydrodynam
description of the MD system.

The present development has two main virtues, o
fundamental and one practical. From a fundamental po
of view our work gives a microscopic foundation to DPD
and thus provides a quantitative meaning to the te
“mesoscopic.” On the practical side this foundation ma
be used to deal with physical systems where the mod
ing is challenged by the simultaneous presence of s
eral different length scales. While conventional DP’s a
spheres of fixed size and mass, the current DP’s are
fined as cells on a Voronoi lattice with variable size
This provides us with the freedom to define particle siz
according to the local resolution requirements—a partic
analog to adaptive meshes in finite—element simulatio
[10]. The concept is illustrated by the simulation of

FIG. 1. Multiscale modeling: The dissipative particles ar
defined as cells in the Voronoi lattice, moving with velocit
Uk . There are four relevant length scales: The scale of t
large, gray colloid particles, the two scales of the dissipati
particles in between and away from the colloids, and finally th
scale of the MD particles, which are shown as the little do
that form the boundaries between the DP’s.
© 1999 The American Physical Society 1775
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colloidal suspension, which is shown in Fig. 1. Here the
computational effort is adapted to meet the local need for
detail of description: it is larger in narrow regions between
the particles than in the bulk. Previous DPD simulations
have had difficulty with dense colloidal suspensions pre-
cisely because the technique is unable to handle multi-
ple length scale phenomena [4]. Other complex systems
where modeling and simulation frequently involve sev-
eral simultaneous length scales include polymeric and am-
phiphilic fluids, particularly in porous media and restricted
geometries [11].

The basic ingredient in our derivation of DPD is
an appropriate coarse-graining scheme. The dissipa-
tive particles are defined as clusters of MD particles
in such a way that the MD particles are all repre-
sented by the dissipative particles. A general way to
achieve this is via the sampling function fk�x� � s�x 2

rk��
P

l s�x 2 rl�. Here the positions rk and rl define
the DP centers, which initially may be distributed arbi-
trarily in space, x is an arbitrary position and s�x� is
some localized function, which we choose as a Gauss-
ian s�x� � exp�2x2�a2�; the distance a sets the scale
of the sampling function. The mass Mk , momentum
Pk , and internal energy Ek of the kth DP are then
defined as
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where xi and vi are the position and velocity of the
ith MD particle, all assumed to have identical masses
m, V �rij� is the MD interparticle potential, and Uk is
the velocity of the kth DP. The kinematic condition
�rk � Uk completes the definition of the DPD. The nor-
malization property

P
k fk�x� � 1 implies directly thatP

k Mk �
P

i m and
P

k MkUk �
P

i mvi , so that if mass,
momentum, and energy are conserved at the MD level,
they are also conserved at the DP level.

In order to obtain the equations of motion for the
DPD we now take the time derivatives of Eqs. (1). The
Gaussian form of s makes it possible to write the time-
derivative �fk�xi� � fkl�xi� �v 0

i ? rkl 1 x0
i ? Ukl� where

the function fkl is defined as fkl�x� � �2�a2�fk�x�fl�x�
and v 0

i � vi 2 �Uk 1 Ul��2, x0
i � xi 2 �rk 1 rl��2,

Ukl � Uk 2 Ul , rkl � rk 2 rl . After some algebra [12]
the microscopic equations of motion then take the form
dMk
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where we have defined the general momentum-flux tensor
P0

i � mv 0
iv

0
i 1 �1�2�

P
j FijDxij , where Fij is the force

between MD particles i and j, the microscopic energy
flux vector J0

i � eiv
0
i 1 �1�4�

P
ifij Fij ? �v 0

i 1 v 0
j�Dxij ,

and mg is the external force on an MD particle. In
the mass equation above the x0

i ? Ukl term may be
shown to be negligible upon averaging, as it samples the
difference in mass density rather than the average of this
quantity across the region where fkl fi 0 [12]. For that
reason it will be omitted, and we have already omitted
the corresponding terms in the momentum and energy
equations.

All the interaction terms in the above transport equa-
tions are weighted by the overlap function fkl�x�. If
only two DP’s, k and l say, are present it may be
shown that fkl�x� � �1��2a2�� cosh22��x 2 �rk 1

rl��2� ? �rk 2 rl��a2�. This function becomes exponen-
tially small away from the dividing line that is equally far
from rk and rl , as is illustrated in Fig. 2. The set of all
such dividing lines defines a Voronoi lattice. In Fig. 1
fictitious MD particles are plotted where fkl�x� . 0.2a2.
This happens in the neighborhood of the dividing lines.
When additional DP’s are present their contribution to
the cosh22 result may be shown to be negligible in the

FIG. 2. The overlap region between two Voronoi cells is
shown in grey. The sampling function fk�r� is shown in the
upper graph and the overlap function in the lower graph. The
width of the overlap region is a2�jrk 2 rl j, and its length is
denoted by lkl .
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vicinity of the dividing line, except at the corners, where
dividing lines meet. In the end the DPD equations of
motion will turn out to be independent of a, and only the
length lkl shown in Fig. 2 will remain. At this point it
suffices to construct the Voronoi lattice itself, and there is
no need to evaluate the overlap functions. Standardized
algorithms and software for the construction of Voronoi
lattices exist [13].

Splitting Eqs. (2) into fluctuating and average parts
gives
dMk

dt
�

X
li
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i
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where �̃Mkl is the fluctuating part of the mass flux, F̃kl is
the fluctuating part of the momentum flux

P
i fkl�xi�Pi ?

rkl 1 �Mkl�Uk 1 Ul��2, and q̃kl is the fluctuating part
of the energy flux

P
i fkl�xi�J0

i ? rkl 1 �1�2� �Mkl�Ukl�2�2.
Note that we have absorbed the contributions from the
mass variations in F̃kl and q̃kl . The thermal averages,
	...
, are computed by means of an ensemble of systems
with common instantaneous values of the mesoscopic
variables �rk , Mk , Uk , Ek�. This means that only the time
derivatives of this set have a fluctuating part.

It is necessary to introduce some average description of
the MD system. For this purpose we assume the scale
separation a ø jrk 2 rlj, for all k and l, and that the
width of the overlap region a2�rkl is larger than the
mean free path of the MD particles. For simplicity, we
choose the momentum flux tensor of a simple Newtonian
fluid which has the form 	Pi
kl
 � IP 2 h�=v 1 �=v�T �,

where h is the dynamic viscosity and P the pressure of
the MD fluid, T denotes the transpose, and I is the identity
tensor [14]. We shall make the approximation that
the average molecular particle velocity 	v
 interpolates
linearly between the DP’s.

It follows that the average mass current 	v 0
 � 0 and
that the velocity gradients in the momentum-flux ten-
sor take the form =v 1 �=v�T � 1�rkl�eklUkl 1 Uklekl�,
where ekl � �rk 2 rl��jrk 2 rlj. Since 	v 0
 � 0 we may
choose the heat flux according to Fouriers law 	J0
 �
l=T , where T is the temperature and l is the thermal
conductivity. In other words, in the frame of reference of
the overlap region the energy flux is simply the heat flux
since work terms proportional to the velocity vanish [14].

With this input we get �Mk �
P

l
�̃Mkl and
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where we have assumed that the pressure p and tem-
perature T , as well as the average velocity, interpolates
linearly between DP centers, pkl � pk 2 pl and Tkl �
Tk 2 Tl . The pressure will eventually follow from an
equation of state of the form pk � p�Ek , Vk� where Vk

is the volume of DP k. The pressure and temperature
must be obtained via a thermodynamic description, i.e., an
equation of state that relates pressure and temperature to
energy Ek and volume Vk . In the special case of an ideal
gas (see Ref. [12] for a more general treatment), these
relations simplify to dpk � pk�dEk�Ek 2 dVk�Vk� and
dTk � dEk��NkB�.

The average rate of change of Mk vanishes. This
allows us to neglect mass variations altogether in the DPD
equations, since the effect of mass fluctuations may then
be absorbed in F̃kl and q̃kl . Had there been a coupling,
say, between the averaged momentum and mass values
the mass would have had to be updated as well. With
nothing but fluctuations in Mk , the only change introduced
by the Mk � const approximation is the loss of the drift
in the Mk ’s around their constant average, caused by the
fluctuations. Nothing is neglected in the instantaneous
changes of momentum and energy.

In general, force fluctuations will cause mass fluctua-
tions, which in turn will couple back to cause momentum
fluctuations. The time scale over which this will happen
is th � r2

kl�h, where h is the dynamic viscosity of the
MD system. This is the time it takes for a velocity per-
turbation to decay over a distance rkl . We shall need to
make the assumption that the fluctuating forces are Mar-
kovian, and it is clear that this assumption may be valid
only on time scales larger than th . Since the time scale of
a hydrodynamic perturbation of size l, say, is also given
as l2�h this restriction implies the scale separation re-
quirement r2

kl ø l2, consistent with the scale rkl being
mesoscopic.

In “conventional” DPD [3,9,15] the forces are pairwise
and act parallel to ekl . They have a conservative part that
1777
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depends only on rkl and a dissipative part proportional
to �Ukl ? ekl�ekl . Here the same terms are present. The
conservative force is seen to arise from the pressure and
the dissipative part from dissipation in the underlying fluid
with the MD viscosity taking the place of a postulated
friction coefficient. In addition, there is a dissipative term
parallel to Ukl . The energy part of Eq. (4) is identical
in form to the energy equation postulated by Avalos
and Mackie [16] and similar to the equation studied by
Español [17], save for the fact that here the work done by
the conservative force �pk 1 pl�ekl ? Ukl�4 is present.
The principal difference is associated with the Voronoi
lattice: Our DP’s fill space and change their shape, a key
feature that enables this new DPD to treat a multitude of
length scales within a single simulation.

In order to obtain F̃ and q̃ we invoke the Markovian
approximation to write F̃ � vklkWklk 1 vkl�Wkl�,
where F̃kl is decomposed into components parallel
and perpendicular to ekl , and the W ’s are defined
as Gaussian random variables with the correlation
function 	Wkla�t�Wnmb�t0�
 � dabd�t 2 t0� �dkndlm 1

dkmdln� where a and b denote either � or k. Newton’s
third law guarantees that vkl � 2vlk . We have the
similar expression q̃kl � LklWkl where Lkl � 2Llk and
Wkl satisfies the above equation for the W ’s without the
dab-factor.

In Refs. [8,12,16] the magnitudes of F̃kl and q̃kl

are obtained on the basis of the Fokker-Planck equa-
tion which derives from equations like Eqs. (4). The
isothermal results, adapted to the present case, are
the fluctuation dissipation relations v

2
klk � 2v

2
kl� �

4hkBT �lkl�rkl� for the force F̃kl and for the heat
fluctuations L

2
kl � 2kBTl�lkl�rkl� [16]. It is also

possible to show that detailed balance [18] holds,
and that the DP’s obey the Gibbs distribution [12]
req � Z21�T , V � exp�2b

P
k�P2

k�2Mk 1 V �rk���, where
the potential V �rk� is responsible for the pressure force in
Eq. (4), and T � 1�bkB is the temperature characterizing
the MD system [12].

Considering now the application illustrated in Fig. 1
we need to define DP-colloid forces. Taking the hydro-
dynamic momentum flux tensor and Eq. (4) as a starting
point, we observe that the DP-colloid interaction may be
obtained in the same form as the DP-DP interaction of
Eq. (4) with the replacement of lkl ! LkI , where LkI is
the length (area in 3D) of the arc segment where the DP
meets the colloid (see Fig. 1). The velocity gradient is
that between the DP and the colloid surface. The latter
may be computed by linear interpolation using Uk and
the velocity of the colloid surface together with a no-
slip boundary condition on this surface. In the momen-
tum fluctuation-dissipation relation too the replacement
lkl ! LkI must be made. In order to increase the spatial
resolution where colloidal particles are close, it is neces-
sary to introduce a higher DP density there; this ensures
that fluid lubrication effects are maintained. After these
1778
particles have moved it may be necessary to retile the DP
system, as is done in finite element calculations. This is
simply achieved by distributing the mass, momentum, and
energy of the old DP’s on the new ones according to their
area (or volume in 3D).

The DPD which we have derived in the present work is
similar to conventional DPD. But the forces convention-
ally used to define DPD have now been given a micro-
scopic basis. More important, however, is the fact that
our analysis permits the introduction of specific physi-
cal interactions at the mesoscopic level, together with a
well-defined meaning for this mesoscale. Finally, we note
the similarity of the present particulate description, which
is based on a bottom-up approach, to existing contin-
uum approaches, which start out from a macroscopic de-
scription. Such top-down approaches include in particular
smoothed particle hydrodynamics [19] and finite-element
simulations. In these descriptions too the computational
method is based on tracing the motions of elements of
the fluid on the basis of the forces acting between them
[20]. We stress, however, that while such top-down com-
putational strategies require as initial input a macroscopic
phenomenological description, the present approach relies
on a microscopic representation from the outside.
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