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Interacting Coherence Resonance Oscillators
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The effect of coherence resonance can change the firing process in noise-driven excitable systems
towards rather regular dynamics. For such stochastic oscillators, we study the synchronization in terms
of locking of the peak frequencies in the power spectrum and also in terms of phase locking. Our
investigations are based on numerical simulations of coupled Morris-Lecar neuron models and on full-
scale experiments with coupled monovibrator electronic circuits.
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During the last few decades, the interest in nonlinear
science has greatly exploded as new types of oscillatory
behavior, namely, chaotic and stochastic ones, have ex-
ploded. The collective behavior of systems composed of
these interacting functional units can be regulated by a co-
operative property, like synchronization phenomena.

For regular oscillations, when phase locking takes place,
a stabilization of the phase shift between the interacting
modes occurs, and the natural frequencies of oscillations
become equal [1]. The classical results for regular oscil-
lations have been generalized to some classes of chaotic
oscillations. It has been shown that the synchronization in
systems demonstrating the period-doubling route to chaos
can be described in terms of fundamental frequency lock-
ing [2]. Following [3], synchronization of chaotic systems
can be generalized to the phase synchronization.

Synchronization phenomena have also been investigated
in nonlinear stochastic systems. Locking of the mean
switching frequency and some kind of phase locking have
been discovered both in periodically forced and in coupled
noise-driven bistable systems [4,5]. Even for noisy sig-
nals, the phase description was found to be useful for the
analysis of synchronization in human cardio-respiratory
systems [6], for instance. These investigations are based
on the classical approach to synchronization in the pres-
ence of noise [7]. The phase locking for stochastic sys-
tems is considered as an event lasting for a finite time and
is described with the diffusion of phase [5] or by the shape
of the phase difference distribution function [6].

Recently, a phenomenon called autonomous stochastic
resonance [8] or coherence resonance (CR) [9,10] has
been observed in excitable systems perturbed by noise
and without external periodic forcing. Note that, in this
case, a deterministic system does not exhibit any self-
sustained oscillations but noise of an optimal intensity
generates a quasiregular signal. Pikovsky and Kurths [9]
explained the effect of CR by different noise dependences
of the activation and the excursion times. Most recently,
the CR effect has been confirmed by means of electronic
experiments [11].

Figure 1 displays the typical shape of the power spectra
in a regime of CR obtained for the relaxation-type Morris-
0031-9007�99�83(9)�1771(4)$15.00
Lecar (ML) neuron model [12] driven by the noise. Each
spectrum possesses a well-defined global maximum which
might be associated with the natural frequency of oscilla-
tions. The regularized behavior is observed within a rea-
sonable range of noise intensity.

In Ref. [13], it was shown for the first time that the
state of an excitable system can be described by a phase-
like variable on the stochastic limit cycle. In Ref. [14],
synchronous oscillation in a coupled stochastic limit cycle
was observed as a collective dynamics of globally coupled
identical excitable systems.

According to the above points of view, a noise-driven
excitable system can be considered as a “CR oscillator”
whose behavior is described by the peak frequency gov-
erned by the noise intensity and the phase introduced as
the position on a stochastic limit cycle. When dealing
with this new type of oscillatory unit, a question arises:
To what extent will interacting nonidentical CR oscillators
adjust their motion in accordance with one another so as
to attain some kind of synchronization?

In this Letter, the synchronization phenomena in sto-
chastic oscillators is investigated. The transition from
nonsynchronous to synchronous state is signaled by
the merging of peak frequencies in the power spectrum
and also by the localized distribution of instantaneous
phase differences. Our results are based on numerical

FIG. 1. The power spectra for the noise-driven Morris-Lecar
model in the regime of coherence resonance.
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simulations of the ML neuron model and on the electronic
experiments with monovibrator circuits [11].

The ML model [12] is a simplified version of the
Hodgkin-Huxley model which describes the spiking and
refractory properties of real neurons. The diffusively
coupled ML models are written as

dy1,2

dt
� Iion�y1,2, w1,2� 1 I1,2 1 D1,2j1,2�t�

1 g�y2,1 2 y1,2� , (1)

dw1,2

dt
� e

w`�y1,2� 2 w1,2

t`�y1,2�
,

where

Iion�y, w� � ḡCam`�y� �yCa 2 y� 1 ḡKw�yK 2 y�
1 ḡL�yL 2 y� ,

m`�y� � 0.5�1 1 tanh��y 1 0.01��0.15�� ,

w`�y� � 0.5�1 1 tanh�y�0.3�� ,

t`�y� � 1� cosh�y�0.6� .

Here, y denotes the transmembrane voltage of a neu-
ron, while w represents the activation of the potassium
current. I is the external stimulus current and j1,2 de-
note noncorrelated sources of Gaussian noise with inten-
sity D1,2, respectively. The last term in the first line of
Eq. (1) represents the diffusive interaction with the cou-
pling strength g. The parameter set used in our simulations
is I � 0.23, ḡCa � 1.1, ḡK � 2.0, ḡL � 0.5, yCa � 1.0,
yK � 20.7, yL � 20.5 and the time separation parame-
ter e � 0.02. For a detailed explanation of the parameters,
see Ref. [12].

Our experimental studies are based on a monovibrator
circuit, which generates a single electric impulse whenever
the external signal exceeds a threshold level [11]. The
electric scheme of the coupled circuits is shown in Fig. 2
and is described by

t
dx1,2

dt
� x�x1,2 2 y1,2 2 �D1,2j1,2�t� 1 ax1,2 1 byb��

2 y1,2 , (2)

dy1,2

dt
� x1,2 2 y1,2 1 g�x1,2 2 y1,2 2 x2,1 1 y2,1� ,

where x and y are voltages at the output of the operational
amplifier and the voltage drop across C, respectively. The
constants a, b are positive and defined by the value of
resistors R1, R2, R3, Rf . yb represents the normalized
threshold voltage. The function x is a sign function which
takes values of 11 and 21 for positive and negative
arguments, respectively. The noise intensities D1,2 of the
independent sources j1,2 control the activation and the
excursion times of each monovibrator. With vanishing
mutual coupling g � R�Rc, CR is observed for an optimal
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FIG. 2. The electrical scheme of the coupled monovibrator
circuits. Both units are identical but the noise sources are
independent.

noise [11]. Decreasing of the time scale t provides a more
prominent CR effect. Hence, CR is most pronounced in
systems with strong relaxation properties.

Let us now analyze synchronization of two diffusively
coupled CR oscillators. Note that the noise intensity plays
the role of a control parameter governing the onset and
the peak frequency of oscillations in an excitable system
(Fig. 1). In this sense, the noise intensity acts like the
nonlinearity and frequency parameter. To investigate the
effect of frequency mismatch on the synchronization of
CR oscillators, the noise intensity of the second oscillator
is chosen to be different from that of the first system.

In Fig. 3a, the evolution of power spectra is plotted
versus the coupling strength g. It is clearly seen how the
peak frequencies of two oscillators approach each other
and become coincident at some value of g. While the noise
intensity D2 is varied (D1 and g are fixed), the frequency-
locked region is easily identified within a certain range
of D2 (Fig. 3b). The frequency-locked interval tends to
become broader as the coupling strength is increased.

From the numerical simulations for the coupled ML sys-
tem in Eq. (1) similar results were also observed. Instead
of presenting similar plots for the simulation results, in
Fig. 4, we plot the phase diagram in two dimensional pa-
rameter space of the coupling strength g and the frequency
mismatch parameter D2. The synchronization region simi-
lar to Arnol’d tongue obtained by the condition of close-
ness of the peak frequencies was v1 2 v2 , const �
0.0002. In the following, the instantaneous phases of two
ML oscillators will be analyzed for the characterization of
synchronization. This will provide us an alternative diag-
nosis of synchronization.

In Refs. [5,6], it has been shown how the instantaneous
phases of stochastic oscillations can be locked. Once
instantaneous phases are defined for the CR oscillators,
similarly, it can be applied to the synchronization of two
coupled CR oscillators [ML system in Eq. (1)]. Accord-
ing to Ref. [13], a stochastic limit cycle was defined by
connecting the most likely escape trajectory out of a sta-
tionary point with the most likely return trajectory back
to that point. The system’s state on this circular trajectory
can be described in terms of phaselike variables. Based on
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FIG. 3. The frequency locking observed in the electronic
experiment: (a) the evolution of the normalized power spectrum
at D1 � 0.1 mV2 (gray color) and D2 � 0.22 mV2 (black
color) as the coupling strength is varied; (b) the ratio of the
peak frequencies (winding number) stabilized near 1.0 value
for a range of D2 with D1 � 0.086 mV2.

the phase variable for each ML system [15], the instanta-
neous phase difference is defined as Df � f1 2 f2. As
the coupling is increased, for a given frequency mismatch,
we observe a transition from a regime where phases rotate
with different velocities (Df � DVt) to a synchronous
state where the phase difference looks bounded but oscil-
lates around some mean value (Fig. 5). For strong enough
coupling strength (g � 0.08), the phase locking for noisy
systems can be observed during a long but finite time [5,7].
Therefore, it has to be determined a priori for how long the
phases should be locked (on the average) to assert that a
noisy system is effectively synchronized. We assume that
stochastic oscillations are synchronous if no 2p phase slips
occur during 50 000 periods.

Figure 6 illustrates the distribution function of phase dif-
ferences (measured during the mentioned finite time) and
the Poincaré sections for three discernible regimes (cor-
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FIG. 4. The synchronization region for two coupled ML
models. The noise intensity D2 effectively plays the role of
a frequency mismatch (D1 � 0.001).

responding to the points A, B, and C in Fig. 4, respec-
tively). Inside the synchronization region (point A), the
cross sections are concentrated in a small area (Fig. 6a)
and the distribution function appears to be limited to a
finite value near the zero phase difference. But outside
the synchronization region (point C), the Poincaré section
is completely different and looks like a ring in the phase
space of the system (Fig. 6c) and the distribution of the
phase difference is continuous over 2p . At the boundary
of synchronization (point B), the Poincaré section indicates
a closed curve but it is not dense everywhere yet (Fig. 6b).
These results allow us to draw an analogy between the tran-
sition from an ergodic torus to a limit cycle in deterministic
case and the evolution observed in stochastic oscillations.

FIG. 5. The phase difference of the coupled ML model as
a function of time for nonsynchronous (g � 0.02), nearly
synchronous (g � 0.035), and synchronous (g � 0.08) states.
D2 � 0.000 75. The phase slips of 2p for a nearly syn-
chronous regime are clearly seen in the enlarged inset.
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FIG. 6. The distributions of the phase difference and the
Poincaré sections (insets) (a) inside the synchronization region
(g � 0.09), (b) near the boundary (g � 0.045), and (c) outside
this region (g � 0.01). D1 � 0.01 and D2 � 0.0015. The
Poincaré section is specified by the condition v1 � 0.35. From
these plots, one can draw an analogy to the transition from a
torus to a limit cycle in the deterministic case.

Following this approach we can upgrade the term “stochas-
tic limit cycle” [13] with the notion of “stochastic torus.”

In conclusion, we have considered the noise-driven
excitable system in a regime of coherence resonance as a
stochastic oscillator, CR oscillator which generates a rather
regular signal within a certain range of noise intensity. For
such coupled stochastic oscillators we have investigated
the phenomenon of mutual synchronization in terms of the
locking of the peak frequencies in the power spectrum and
also in terms of phase locking.

Drawing an analogy to the deterministic case and fol-
lowing the concept of stochastic limit cycle, we have
interpreted a nonsynchronous stochastic oscillation as a
stochastic torus which can be characterized by the pres-
ence of two different time scales (two independent peaks
in power spectra [16]) and, geometrically, as an object in-
volving two stochastic limit cycles in the phase space of
the system.

The authors thank H. Kook, S. Kim, C. Kim,
A. Pikovsky, and A. Longtin for useful discussions. D. P.
and O. S. are supported by KISTEP through Korea-Russia
scientific exchange program during their stay at the
Physics Department of Chungbuk National University.
D. P. and O. S. also acknowledge support from Russian
Foundation of Fundamental Research (Grant No. 99-02-
17732). S. K. H. is supported by Brain Research Project
1774
of the Ministry of Science and Technology and also
by the Korea Research Foundation in the program year
of 1998.

Note added.—Recently, in Ref. [17], the role of noise
in sustaining global patterns has been investigated in a
locally coupled network of excitable systems.
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