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Quantum Entangled Images
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We analyze a scheme consisting of an optical parametric amplifier and two imaging lenses. From
an off-axis input image such a system creates two quantum entangled output images, signal and idler,
symmetrical with respect to the optical axis of the scheme. In the limit of large amplification the idler
image is a quantum twin of the signal one in the sense that they display identical intensity fluctuations
in space-time.

PACS numbers: 42.50.Dv, 03.67.–a, 42.65.–k
The possibility of quantum correlations (entanglement)
between light beams played a major role in the recent
development of quantum optics. It is now clear that
entanglement, an ubiquitous and intriguing concept in
quantum physics, represents an opportunity because it
leads to novel applications such as quantum cryptography,
quantum computation, and quantum teleportation. Entan-
glement phenomena in optics have been investigated, how-
ever, recently at the level of single photon pairs (see, e.g.,
[1]) and in the temporal domain. The demonstration of
spatial aspects of quantum entanglement in light for sys-
tems with a large number of photons may increase substan-
tially the amount of information involved in applications.
Starting from our investigation on the quantum aspects of
optical pattern [2], in this paper we predict the possibility
of generating pairs of optical images that are quantum en-
tangled to each other. This result may pave the way to the
development of a quantum optics of images, intended to
explore how quantum features could be used in the paral-
lel processing of information.

Recently we analyzed the spatial correlations of inten-
sity fluctuations in the far field of the light emitted by a de-
generate optical parametric oscillator (OPO) with spherical
mirrors below threshold. We considered the total num-
ber of photons N1 and N2 in two regions of the far-field
plane, symmetrical with respect to the optical axis of the
system, and showed that the fluctuations in the difference
N2 � N1 2 N2 are largely below the shot-noise level [3].

While in the case of [3] the emitted light arises from
the amplification of vacuum fluctuations, in this article we
address a situation where the radiation field carries infor-
mation, because it corresponds to the amplification of an
image. As a result of our analysis we predict the phenom-
enon depicted in Fig. 1. The element OPA�OPO corre-
sponds to a cavityless optical parametric amplifier (OPA)
or to an OPO with planar mirrors below threshold [4]. We
consider type I, nearly degenerate phase matching in the
nonlinear crystal. Not shown in the figure is the plane-
wave pump field of frequency vp , activating the paramet-
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ric down-conversion process; L and L0 are imaging lenses.
An input image I is injected in the OPA�OPO at the fre-
quency vp�2; at the output one has an amplified version
IS (signal image) of the input, plus the phase-conjugate
image II (idler image). In the limit of large amplification,
signal and idler images have the same mean intensity dis-
tribution. We demonstrate that in the same limit these two
images are quantum mechanically entangled; II and IS are
correlated much better than two classical copies because
the intensity fluctuations in each portion of II are “iden-
tical” to those in the corresponding portion of IS . Pre-
cisely, the fluctuations in the intensity difference are well
below the shot noise level.

Before discussing the scheme in Fig. 1, let us consider
the simpler situation shown in Fig. 2, in which there are
no lenses and we focus our attention on two plane waves
at the frequency vp�2, symmetrically tilted with respect
to the system axis. Namely, if �x � �x, y� is the position
vector in any transverse plane, and �k � �kx , ky� is the
transverse component of the wave vector, we consider two
plane waves of the form ei �k? �x and e2i �k?�x . Indicating by
ain

�k
and ain

2�k
the annihilation operators of photons for the

input waves and aout
�k

, aout
2 �k

those for the output waves,
they are linked by a unitary transformation of the form

FIG. 1. Parametric image amplifier in the phase-insensitive
configuration: the object is confined to the upper half of plane
P1; the two-lens system allows for projection of the amplified
signal and idler images in plane P4.
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FIG. 2. Schematic representation of an OPA�OPO with two
tilted input waves in the coherent states ja� �k and jb�2 �k ;
amplification is phase insensitive for a fi 0, b � 0, and phase
sensitive for a � b fi 0.

(see, e.g., [5,6])

aout
�k

� eic �cosh�r�ain
�k

1 eif sinh�r�ainy

2 �k
� , (1a)

aout
2 �k

� eic �cosh�r�ain
2 �k

1 eif sinh�r�ainy
�k

� . (1b)

We assume that the two input waves are in coherent
states ja��k and jb�2 �k , respectively. By applying the
transformation (1a) and (1b) on the state, rather than on
the operators, the uncorrelated input state ja� �k jb�2 �k is
transformed into the entangled output state of the two
waves [7]

jOUT� � G�c� exp�za
y
�k
a
y

2 �k
2 z �a �ka2 �k	 ja��k jb�2 �k ,

(2)

where G�c� � exp�ic�ay
�k
a �k 1 a

y

2 �k
a2 �k��, and z � reif.

Let us distinguish two cases: (a) The input wave 2 �k is in
the vacuum state, i.e., b � 0, with a fi 0. The wave �k
undergoes phase-insensitive amplification, with cosh�r�2

being the intensity amplification factor. In the output the
ratio of the intensity of the wave 2 �k to that of wave �k is
sinh�r�2� cosh�r�2 and tends to unity when cosh�r�2 ¿ 1.
This situation was analyzed theoretically and experimen-
tally by Kumar et al. in [8], as an extension of their pre-
vious work [9] to the spatial domain. They demonstrated
that the intensity difference between such two waves ex-
hibits fluctuations below the shot-noise level. (b) The
two input waves have the same amplitude, b � a, so
that the input field has a spatial distribution of the form
cos� �k ? �x�. When recast in terms of the waves cos� �k ? �x�
and sin� �k ? �x�, the model (1a) and (1b) describes two
independent single-mode degenerate parametric ampli-
fiers, so that the waves experience phase-sensitive am-
plification. Such a case is equivalent to that analyzed
theoretically and experimentally in temporal domain by
Levenson et al. [10], using polarization degrees of free-
dom instead of spatial modes. In the output, two waves
have highly correlated quantum fluctuations in the ampli-
fied quadrature components.

In our device (Fig. 1) we consider the amplification of
an image instead of a plane wave, with a phase-insensitive
amplification as described in the case (a). Essential
elements in our scheme are the imaging lenses L and L0
1764
(see Fig. 1) first introduced in [6]. The analysis of [6],
however, was focused on phase-sensitive amplification
and did not consider the quantities relevant here.

We designate by a1� �x, t�, a2� �x, t�, a3� �x, t�, a4� �x, t� the
slowly varying (with respect to the carrier frequency
vp�2) operators in the input plane P1, the entrance plane
of the amplifier P2, the exit plane of the amplifier P3, and
the output plane P4, respectively. We denote by ai� �x, V�,
ai� �k, V� �i � 1, . . . , 4� their Fourier transforms in time,
and in space-time.

By neglecting a pump depletion, the fields a3� �k, V�
and a2� �k, V� are related by the following input-output
transformation:

a3� �k, V� � u�j �kj, V�a2��k, V� 1 y�j�kj, V�ay
2 �2 �k, 2V� ,

(3)

where, compared to Eqs. (1a) and (1b), we have included
the temporal arguments. The explicit form of the func-
tions u�j �kj, V� and y�j �kj, V� can be found in [5] for the
OPA and in [6] for the OPO. For an OPA they depend
on the phase mismatch along the propagation direction,
the dispersion relation in the crystal, and the paramet-
ric gain [5]; for an OPO they are functions of the cavity
detuning, its decay constant, and the distance from oscil-
lation threshold of the OPO [6]. For our purposes, how-
ever, only relevant is the unitarity condition ju�j �kj, V�j2 2

jy�j �kj, V�j2 � 1.
The lenses L and L0 located as shown in Fig. 1 map

the Fourier plane �kx , ky� into the physical plane �x, y�, so
that the system amplifies a portion of the image instead
of a band of k vectors. In the absence of the pupil A,
operators in the input and the output planes are related
by the following transformation, valid in the paraxial
approximation:

a4� �x, V� � 2u�j �xj, V�a1�2 �x, V� 1 y�j �xj, V�ay
1 � �x, 2V� ,

(4)

where

u�j �xj, V� � u

µ
2pj �xj

lf
, V

∂
,

y�j �xj, V� � y

µ
2pj �xj

lf
, V

∂
,

(5)

l is the wavelength of the signal field, and f is the
focal length of the lenses. The pupil A introduces into
relation (4) a convolution [11] with the impulse response
function of the system [6]. The pupil area SA determines
the resolution area SR of the scheme, SR � �lf�2�SA.

The region of optimal amplification is characterized by
the spatial scale x0 of variation of the functions u, y [5,6],

x0 �
fl

2p
Dk, with Dk �

q
2p�lleff , (6)

where leff is the crystal length for the OPA, and leff �
L�T for the OPO, with L being the cavity length and
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T the transmission coefficient of the coupling mirror;
Dk represents the amplification bandwidth in the spatial-
frequency domain. This region has a shape of either a
disk of radius 
x0, or an annulus of thickness 
x0, both
centered at the symmetry axis. The occurrence of one or
another case is controlled by the phase mismatch d0 in the
propagation direction for the OPA [5], and by the cavity
detuning parameter in the OPO case [6]. Figure 3 plots
the amplification factor ju�j �xj, V � 0�j2 for two values of
d0, in the OPA case. The ratio of the amplification area to
the resolution area SR determines the number N of image
elements that can be effectively amplified by the scheme.
This number is assessed by

N �
1

�2p�2 SADk2 ; (7)

in the following we assume that N ¿ 1.
We make several assumptions about the input image:

(i) the field in the input plane P1 is weak with respect to
the pump, stationary in time, and in a coherent state, such
that

�a1� �x, V�� �
p

2p d�V�ain��x� , (8)

where jain� �x�j2 represents the mean number of photons
per unit area and unit time; (ii) the input image is confined
to (say) the upper half plane [ain� �x� � 0 for y , 0], and
to the effectively amplified region; and (iii) variations
of ain� �x� over regions of the order SR are negligible.
It follows that the stationary intensity distribution in the
output plane P4 is given by

�ay
4 � �x, t�a4� �x, t�� � ju�j �xj, 0�j2 jain�2 �x�j2

1 jy�j �xj, 0�j2 jain� �x�j2

1
1

SR

Z dV

2p
jy�j �xj, V�j2. (9)

Here the first term is localized in the lower half plane
y , 0, and corresponds to the amplified input image (sig-
nal image); the second contribution, in the upper half
FIG. 3. OPA gain curves for two different values of the
collinear phase mismatch d0.

plane, corresponds to the phase-conjugate (idler) image
(symmetrical parts of these images have the same inten-
sity in the limit jyj ¿ 1); while the last term is a pure
noise contribution arising from spontaneous parametric
down-conversion. The main purpose of introducing the
finite-size pupil in our scheme is for evaluation of this
noise term which diverges for SA ! ` (see [6]).

Let us now consider two detectors 1 and 2 with
quantum efficiency h that detect photons crossing two
symmetrical regions of the signal image (1) and of the
idler image (2) (Fig. 1). Operators i1�t�, i2�t� represent
the photocurrents produced in detectors 1, 2; their mean
values are proportional to the mean photon fluxes:

�ij�t�� � h
Z

Rj

d �x �ay
4 � �x, t�a4��x, t�� � j � 1, 2� ,

(10)

where the detection regions Rj are assumed larger than
SR . As for fluctuations, we evaluate the photocurrent
noise spectra:

Vjk�V� �
Z `

2`
dt eiVt�dij�t�dik�0�� � j, k � 1, 2� ,

(11)

where dij�t� � ij�t� 2 �ij�t��. On the basis of our as-
sumptions we obtain the following results:
V11�0� � �SN�1 1 h2
Z

R2

d �x

Ω
2ju�j �xj, 0�j2 jy�j �xj, 0�j2 jain��x�j2 1

1
SR

Z dV

2p
jy�j �xj, V�j4

æ
, (12)

V12�0� � h2
Z

R2

d �x

Ω
2ju�j �xj, 0�j2 jy�j �xj, 0�j2 jain� �x�j2 1

1
SR

Z dV

2p
ju�j �xj, V�j2 jy�j �xj, V�j2

æ
, (13)
where �SN�1 � �i1�t�� is the shot-noise contribution.
V22�0� is obtained from V11�0� by replacing the index
1 by 2, and the function ju�x, 0�j2 by jy�x, 0�j2. For
large amplification, jyj2 ¿ 1, fluctuations in regions 1
and 2 are very much above the shot-noise level. However,
fluctuations in symmetrical portions of the two images
are strongly correlated. The degree of correlation can
be expressed through the fluctuation spectrum of the
photocurrent difference i2�t� � i1�t� 2 i2�t�:
V2�V � 0� �
Z `

2`
dt �di2�t�di2�0�� (14)

� �SN�2

∑
�1 2 h� 1 h

�SN�in

�SN�2

∏
, (15)

where

�SN�2 � �i1� 1 �i2� , (16)
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�SN�in � h
Z

R2

d �x jain� �x�j2 (17)

are the shot noise for V2, and for the portion R2 of
the input image, respectively. For large amplification
and reasonably large detector efficiency the noise of the
photocurrent difference is well below the shot-noise level,
because �SN�in ø �SN�2. The effect is spectacular in
the case of ideal detectors, h � 1, when V2 � �SN�in,
and persists over all the frequency bandwidth T21

a of
the amplifier. Hence quantum fluctuations in each output
image are quite above the shot-noise level, but very well
synchronized over a time scale *Ta.

The fact that the system is fully in the quantum
domain is confirmed by the conditional variance V �i1ji2�
[12] which describes how much the photocurrent fluc-
tuations in R1 (signal) can be reduced by measuring the
fluctuations in R2 (idler), and introducing a feedback loop.
For hjyj2 ¿ 1, assuming detection regions much smaller
than the spatial scale of variation x0 of the gain function
jyj, and neglecting the contributions from spontaneous
parametric down-conversion, we arrive at

V �i1ji2� � V11�0�
∑
1 2

V 2
12�0�

V11�0�V22�0�

∏
(18)

� �SN�1

∑
2�1 2 h� 1

2h 2 1
2h

1
jy�V � 0�j2

∏
.

(19)

Clearly V �i1ji2� , �SN�1 when h . 1�2, and in the limit
h � 1 the ratio V �i1ji2���SN�1 scales as jyj22. In the
same limit in which Eq. (19) is obtained, the expression
(12) reduces to V11�0� � �SN�1 �1 1 2hjy�V � 0�j2�.
Hence, for h � 1 there is a drastic noise reduction
by a factor 4jyj4 when passing from the unconditioned
variance V11 to the conditional variance V �i1ji2�.

Equation (15) shows that the noise reduction in the
intensity difference is limited only by the noise in the
input image. Of special interest is the case in which
no image is injected, i.e., ain � 0. In this case, for
h � 1, V2�0� � 0 and V �i1ji2� � 0. This represents a
much sharper result than that obtained for an OPO with
spherical mirrors [3].

Apart from Eq. (19), we took fully into account the
contribution of the spontaneous down conversion; the
condition for neglecting the noise term in Eq. (9) is
rather compelling and can be estimated by replacingR

dV jy�j �xj, V�j2 by jy�j �xj, 0�j2 T21
a . This gives

2pjain� �x�j2SRTa ¿ 1 . (20)

The same inequality ensures that we can neglect the
terms independent of jain� �x�j2 in Eqs. (12) and (13).
For an OPA, using the experimental setup in [13] as a
guideline, we take the values l � 1024 cm, f � 100 cm,
leff � 1.2 cm, S

1�2
A � 1 cm, which gives S

1�2
R � 8.3 3

1023 cm, and N  2300 amplified image elements. For
an input image intensity of 10 W�cm2 [14], and 2pTa �
1766
10213 s, the left-hand side of Eq. (20) is on the order of
102. In the OPO case, using a self-imaging resonator [15],
a value of leff similar to that of the OPA can be attained,
so we can consider the same parameter values. Since in
this case Ta 
 1028 s, condition (20) can be fulfilled with
cw operation.

From these estimations we can conclude that experi-
mental observation of the phenomenon that we describe
in this paper appears compatible with present experiments
on parametric down-conversion and amplification [8,13],
and on single-pass parametric amplification of optical im-
ages [16]. The results of our analysis are quite general
and hold for an OPO, for an OPA with generic dispersion
law, and also for the four-wave mixing processes, because
the input-output relations are given by a unitary transfor-
mation of the same form [17].
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