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Determination of Atom-Surface van der Waals Potentials from Transmission-Grating
Diffraction Intensities
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Molecular beams of rare gas atoms and D2 have been diffracted from 100-nm-period SiNx

transmission gratings. The relative intensities of the diffraction peaks out to the eighth order depend on
the diffracting particle and are interpreted in terms of effective slit widths. These differences have been
analyzed by a new theory which accounts for the long-range van der Waals2C3�l3 interaction of the
particles with the walls of the grating bars. The values of theC3 constant for two different gratings are
in good agreement and the results exhibit the expected linear dependence on the dipole polarizability.

PACS numbers: 34.50.Dy, 03.75.Be
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Already in 1932 Lennard-Jones [1] predicted that th
van der Waals interaction of atoms and molecules wi
solid surfaces is given by

V � 2
C3

l3 , l * 10 Å , (1)

where l is the distance from the surface. This potentia
plays an important role in understanding virtually all stati
(thermodynamical) and dynamical aspects of gas adso
tion phenomena. Despite its importance, very few expe
mental determinations ofC3 have so far been reported and
most of our present knowledge is based on theoretical
timates [2]. The pioneering experiments by Raskin an
Kusch on the deflection of Cs atoms from a conductin
metal surface [3] have recently been extended to alk
atoms in high Rydberg states by measuring the transm
sion through 8-mm-long narrow (2 9 mm) channels as a
function of their principal quantum numbern [4]. Similar
techniques have also been applied to the interaction of
kali atoms in their ground state [5,6] or in low excited state
[7]. Although the scattering of many different atoms an
molecules from solid single crystal surfaces has been e
tensively studied, the reflection coefficients are relative
insensitive to the weak long-range attractive forces sin
the collisions are largely determined by the reflection fro
the hard repulsive wall close to the surface [8].

Here, a new atom optical technique using transmissi
grating diffraction [9,10] of molecular beams is employed
The van der Waals force causes a change in the diffra
tion intensities just as a smaller slit width would. A newly
developed theory makes it possible to interpret measu
ments over a range of different beam energies in term
of the potential constantC3. For an incident plane wave
the diffraction peak heights depend on the number of
luminated slitsN , asN2. With N � 100 slits the gain in
sensitivity is about 4 orders of magnitude over previou
experiments.
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The measurements were made with a previously
scribed [10] molecular beam diffraction apparatus. T
beams are produced by a free jet expansion of the p
fied gas through a5-mm-diameter,2-mm-long orifice from
a source chamber at a temperatureT0, into vacuum of
about2 3 1024 mbar. At T0 � 300 K the source pres-
sureP0 was 140 bars for He, Ne, Ar, and D2 and 50 bars
for Kr. At lower source temperatureP0 was reduced to
avoid cluster formation. The atomic beams are charac
ized by narrow velocity distributions withDy�y � 2.1%
(He), 5% (Ne), 7.6% (D2), 7.7% (Ar), and 10% (Kr) at
T0 � 300 K, whereDy andy denote the full half width
and the mean value, respectively. After passing throu
the 0.39-mm diameter skimmer the beam is collimated
two 10- mm- wide and 5-mm-tall slits 6 and 48 cm down
stream from the source before it impinges on the silic
nitride (SiNx) transmission grating with a grating period o
d � 100 nm and 5-mm-high slits with nominal widths o
snom � 50 nm [11] placed 2.5 cm behind the second col
mating slit. The diffraction pattern is measured by rotati
the electron impact ionization mass spectrometer dete
around an axis parallel to the grating slits. A third,25-mm-
wide slit, 52 cm downstream from the grating, provides
measured angular resolution of70 mrad (FWHM).

Transmission measurements with He and Kr atom
beams indicate that the grating bars have a truncated tr
zoidal profile (thickness in the beam directiont) [12,13]
with the narrow face towards the incident beam. The m
sured wedge anglesb and geometrical slit widthss0 (see
below) are listed in Table I.

The diffraction measurements are illustrated in Fig. 1
four inert gases as a function of the perpendicular wa
vector transferk � k sinq , where q is the diffraction
angle. The area under thenth order diffraction peak,In,
is proportional to the gratingslit function evaluated at the
diffraction angle of the maximum position,qn. For this
grating, I, which has equally wide bars and slits, the ze
© 1999 The American Physical Society 1755
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TABLE I. Geometrical properties of the three gratings.

Grating b [deg] s0 [nm]

I 7.5 6 2 50
II 8.7 6 2 67.5 6 0.1
III 12.7 6 2 71.2 6 0.1

of the slit function coincide with the even diffraction orders
[14], which are therefore expected to vanish. Whereas for
He this is almost the case, for the heavier rare gases, an
increasing deviation is observed. For example, the small
He intensity ratio of the second and third order peaks
is slightly larger for Ne, almost unity in the case of Ar
and, finally, for Kr is greater than one. Similar trends are
observed for the ratio of the sixth and fifth order peaks
and in the ratio of the most intense zeroth and first orders,
which increases significantly from about 0.39 for He to
about 0.52 for Kr.

These differences are attributed to the interaction of
the atoms with the bar walls, Eq. (1), which so far
has not been accounted for in the theory of atom/
molecule diffraction. For a plane wave eikz incident on
a transmission grating with perfectly reflecting grating
bars and with an additional (attractive) potential at the bar
sides, the diffracted wave function is, for large r ,
FIG. 1. Diffraction patterns measured with grating I for He, Ne, Ar, and Kr at the same beam energy (T0 � 300 K). The insets
contain a comparison between least-squares fits of In�I1 determined from Eq. (11) with continuous values of n (solid lines) and
Kirchhoff theory (dashed lines) to measured diffraction intensity ratios (points).
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c�r� !
r!`

f�q �
ei�kr2p�4�

p
r

, (2)

where r2 � x2 1 z2 is in the scattering plane normal
to the height of the slits. The scattering amplitude
f�q � is determined by the grating transmission function
c�x, 0�, i.e., by the wave function at the far side slit
boundaries (z � 0), which depends on the attractive
potential. Huygens’ principle [14] yields

f�q � �
cosq
p

l

Z
slits

dx c�x, 0�e2ikx sinq . (3)

If the slit and the bar widths are much larger than the de
Broglie wavelength l, the intensity I�q � � jf�q �j2 can
be written as a product

I�q � �

√
sin� 1

2Nkd sinq �
sin� 1

2kd sinq �

!2

jfslit�q �j2, (4)

where N denotes the number of slits and jfslitj
2 is the slit

function. Thus, the atomic diffraction pattern consists of
principal maxima at the diffraction angles sinqn � nl�d,
n � 0, 61, 62, . . . while jfslit�q �j2 plays the role of an
envelope function. Equation (3) gives, after a change of
variable from x to a variable with the origin at the edge of
a slit, z � s0�2 2 x,

fslit�q � �
cosq
p

l
2

Z s0
2

0
dz cos

∑
k

µ
s0

2
2 z

∂∏
t�z � , (5)
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where t�z � � c�s0�2 2 z , 0�, 0 # z # s0�2, is the
single-slit transmission function.

It is instructive to first deduce the general structural
form of fslit�q �. Since the grating bars reflect those atoms
which touch the bar walls, the wave function in the slit
vanishes at the walls, i.e., t�0� � 0. Taking this into
account and after a partial integration Eq. (5) becomes

fslit�q � �
cosq
p

l
t

µ
s0

2

∂
eik s0

2 F�2k� 2 e2ik s0
2 F�k�

ik
,

(6)
where

F�6k� �
Z s0

2

0
dz e6ikz t0�z �

t� s0

2 �
, (7)

with F�0� � 1. The logarithm of F can be expanded as

logF�6k� �
X̀
n�1

�6ik�n

n!
Rn , (8)

where the complex Rn are known as cumulants [15],

R1 �
Z s0

2

0
dz z

t0�z �
t� s0

2 �
�

s0

2
2

Z s0
2

0
dz

t�z �
t� s0

2 �
, (9)

etc. For the small wave-vector transfer k of interest here,
only the first two terms are needed in the series Eq. (8).
The single-slit amplitude Eq. (6) then becomes

fslit�q � � 2
cosq
p

l
t

µ
s0

2

∂
e2 k2

2
R2

sin�k� s0

2 2 R1��
k

. (10)

For a comparison with experiment the surface rough-
ness of the grating bars must be accounted for. In a first
approximation roughness has been included by rigid shifts
of the individual bar sides (see also Ref. [16]), which are
randomly Gaussian distributed. In the case of a weak sur-
face potential, this results in an additional Debye-Waller-
like damping factor exp�2k2s

2
0 sin2qn� in the intensity

ratio of the principal maxima, In�I0, where s
2
0 is the vari-

ance of the geometrical slit width [13]. Taking this into
account, Eq. (4) with Eq. (10) yields

In

I0
�

e2� 2pns

d
�2

� pn
p

s2
eff1d2

d �2

∑
sin2

µ
pnseff

d

∂
1 sinh2

µ
pnd

d

∂∏
,

(11)

where s2 � s
2
0 1 Re�R2�, seff � s0 2 2 Re�R1� and

d � 2 Im�R1�. The first term in the brackets of Eq. (11)
leads to a Kirchhoff-like slit function (see, e.g., Ref. [13])
with a Debye-Waller term and an effective reduced slit
width seff, while the second term suppresses the zeros
of the Kirchhoff pattern, as can be seen in the insets of
Fig. 1.

The effective variance s2 as well as seff and d

in Eq. (11) can be calculated for the potential Eq. (1).
The standard eikonal approximation [9,17] is used to
determine the grating transmission function, given by
c�x, 0� � eiw�x� in the slits and zero elsewhere. The
phase shift reads

w�x� � 2
1

h̄y

Z
dz V �x, z� , (12)

where y � h̄k�m is the particle velocity. Taking the
trapezoidal bar profile into account, after some algebra the
single-slit transmission function becomes

t�z � � exp

2
4i

t cosb
h̄y

C3

z 3

1 1
t

2z tanb

�1 1
t
z tanb�2

3
5 . (13)

An analysis of Eqs. (13) and (9) reveals that Re�R1�, and
hence seff, is especially sensitive to the potential.

The effective slit width seff, as well as d and s, was
determined from the experiment by fitting the relative
experimental diffraction intensities In�I1 as depicted in
the insets of Fig. 1 to the corresponding ratios determined
from Eq. (11). These ratios and not In�I0 are compared
with theory since small concentrations of clusters in
the beams can falsify the I0 intensities. The effective
slit widths are plotted versus the particle velocity in
Fig. 2 (points) for two different gratings. The difference
between the effective slit widths for T0 � 300 K beams
and the geometrical slit width s0 increases from 1 nm
(He) to more than 6 nm for Kr as expected from the
increasing interaction strength of the van der Waals
potential. With increasing C3 the slope of the curves also
increases. The solid lines in Fig. 2 represent least-squares
fits of the theoretical expression seff � s0 2 2 Re�R1�,
with R1 given by Eqs. (9) and (13), to the experimentally

FIG. 2. Effective slit widths plotted as a function of the
particle velocity for He, Ne, D2, Ar, and Kr beams. The solid
lines are theoretical curves determined from Eqs. (9) and (13)
with the C3 parameters in Fig. 3. Data points indicate fits of
In�I1 determined from Eq. (11) to experimental intensity ratios
obtained from diffraction measurements with two gratings.
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FIG. 3. Measured C3 values of silicon nitride (SiNx) obtained
in this work plotted as a function of the static electric dipole
polarizability of the respective atom, a (see Ref. 8). The solid
line is a linear fit of the data.

determined effective slit widths, which allow for the
determination of C3 and s0. Since He has the smallest
polarizability and measurements over the largest range of
velocities were possible they were used to determine the
values of s0 in Table I for each of the gratings. Identical
values for s0 were obtained from D2 measurements. This
value of s0 was then used for Ne, Ar, and Kr, with C3 the
only remaining fit parameter, and hence for these systems
measurements at various velocities are not necessary.

The C3 parameters are plotted versus the static electric
dipole polarizabilities a in Fig. 3. The error bars were
determined by assuming a realistic uncertainty in the
bar geometry by varying b by 62± in Eq. (13). This
uncertainty seems to be the only systematic source of
error in the present C3 determination and leads to errors
of about 20%. Figure 2 indicates that the influence of the
surface potential is restricted to distances much smaller
than the slit width and therefore, by Ref. [18], corrections
due to the finite bar width should be negligible.

Within the error bars the data from both gratings fall
on a straight line in agreement with Hoinkes’ empirical
rule [8]. Accordingly the slope provides information on
the optical dielectric constant of the grating material. An
approximation to the theoretical expression for C3 [19]
predicts that D2 should in fact have a slightly smaller ratio
of C3�a than the rare gas atoms, while among them Ne is
expected to have the largest ratio. It is satisfying to see
that the small deviations from the straight line in Fig. 3
agree with this expected trend.
1758
The big advantage of the present method is its large
sensitivity as can be seen from Fig. 2 and its universality.
In principle all atoms and molecules are accessible for
study. The only restrictions will be to produce gratings of
different solids and molecular beams with sufficiently nar-
row velocity distributions and to reduce the corresponding
background in the mass spectrometer detector to assure an
adequate signal-to-noise ratio. The present work also al-
lows for a quantitative understanding of diffraction inten-
sities in atom optics and atom interferometry experiments
using transmission structures as optical elements.

We are greatly indebted to Tim Savas and Henry
I. Smith of MIT for providing the transmission gratings
to us. Further, we thank Dick Manson and G. Schmahl
for fruitful discussions.
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