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Molecular beams of rare gas atoms and Bave been diffracted from 100-nm-period $iN
transmission gratings. The relative intensities of the diffraction peaks out to the eighth order depend on
the diffracting particle and are interpreted in terms of effective slit widths. These differences have been
analyzed by a new theory which accounts for the long-range van der Wa@lgl® interaction of the
particles with the walls of the grating bars. The values of@heonstant for two different gratings are
in good agreement and the results exhibit the expected linear dependence on the dipole polarizability.

PACS numbers: 34.50.Dy, 03.75.Be

Already in 1932 Lennard-Jones [1] predicted that the The measurements were made with a previously de-
van der Waals interaction of atoms and molecules wittscribed [10] molecular beam diffraction apparatus. The

solid surfaces is given by beams are produced by a free jet expansion of the puri-
Cs fied gas through &-um-diameter2-um-long orifice from
V=—-= I=10A, (1) a source chamber at a temperatdig into vacuum of

P about2 X 10~* mbar. AtT, = 300 K the source pres-
where! is the distance from the surface. This potentialsure P, was 140 bars for He, Ne, Ar, anch@2nd 50 bars
plays an important role in understanding virtually all staticfor Kr. At lower source temperatur®, was reduced to
(thermodynamical) and dynamical aspects of gas adsor@void cluster formation. The atomic beams are character-
tion phenomena. Despite its importance, very few experiized by narrow velocity distributions withv /v = 2.1%
mental determinations @f; have so far been reported and (He), 5% (Ne), 7.6% (B), 7.7% (Ar), and 10% (Kr) at
most of our present knowledge is based on theoretical egy, = 300 K, where Av andv denote the full half width
timates [2]. The pioneering experiments by Raskin andand the mean value, respectively. After passing through
Kusch on the deflection of Cs atoms from a conductinghe 0.39-mm diameter skimmer the beam is collimated by
metal surface [3] have recently been extended to alkakwo 10- um- wide and 5-mme-tall slits 6 and 48 cm down-
atoms in high Rydberg states by measuring the transmistream from the source before it impinges on the silicon
sion through 8-mm-long narrov2{9 xm) channels as a nitride (SiN,) transmission grating with a grating period of
function of their principal quantum number4]. Similar d = 100 nm and 5-mme-high slits with nominal widths of
techniques have also been applied to the interaction of ak,,,, = 50 nm [11] placed 2.5 cm behind the second colli-
kali atoms in their ground state [5,6] or in low excited statesmating slit. The diffraction pattern is measured by rotating
[7]. Although the scattering of many different atoms andthe electron impact ionization mass spectrometer detector
molecules from solid single crystal surfaces has been exaround an axis parallel to the grating slits. A thi2d;um-
tensively studied, the reflection coefficients are relativelywide slit, 52 cm downstream from the grating, provides a
insensitive to the weak long-range attractive forces sinceneasured angular resolutiontd wrad (FWHM).
the collisions are largely determined by the reflection from Transmission measurements with He and Kr atomic
the hard repulsive wall close to the surface [8]. beams indicate that the grating bars have a truncated trape-
Here, a new atom optical technique using transmissiomoidal profile (thickness in the beam direction[12,13]
grating diffraction [9,10] of molecular beams is employed.with the narrow face towards the incident beam. The mea-
The van der Waals force causes a change in the diffracsured wedge angle8 and geometrical slit widths, (see
tion intensities just as a smaller slit width would. A newly below) are listed in Table I.
developed theory makes it possible to interpret measure- The diffraction measurements are illustrated in Fig. 1 for
ments over a range of different beam energies in termfour inert gases as a function of the perpendicular wave
of the potential constar@;. For an incident plane wave vector transfer« = k sind, where ¢ is the diffraction
the diffraction peak heights depend on the number of il-angle. The area under thgh order diffraction peaki,,
luminated slitsV, asN2. With N = 100 slits the gain in is proportional to the gratingit function evaluated at the
sensitivity is about 4 orders of magnitude over previoudiffraction angle of the maximum positior},. For this
experiments. grating, I, which has equally wide bars and slits, the zeros
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TABLE I. Geometrical properties of the three gratings.
Grating B [deg] so [nm]

I 752 50

I 87 *+2 67.5 = 0.1

Il 127 =2 71.2 = 0.1

of the dlit function coincide with the even diffraction orders
[14], which are therefore expected to vanish. Whereas for
He this is amost the case, for the heavier rare gases, an
increasing deviation is observed. For example, the small
He intensity ratio of the second and third order peaks
is dlightly larger for Ne, almost unity in the case of Ar
and, finaly, for Kr is greater than one. Similar trends are
observed for the ratio of the sixth and fifth order peaks
and in the ratio of the most intense zeroth and first orders,
which increases significantly from about 0.39 for He to
about 0.52 for Kr.

These differences are attributed to the interaction of
the atoms with the bar wals, Eq. (1), which so far
has not been accounted for in the theory of atom/
molecule diffraction. For a plane wave ¢** incident on
a transmission grating with perfectly reflecting grating
bars and with an additional (attractive) potential at the bar
sides, the diffracted wave function is, for large r,

ei(kr—ﬂ'/4)

V) SO 2

where r> = x? + z? is in the scattering plane normal
to the height of the dlits. The scattering amplitude
f(2¥) is determined by the grating transmission function
¥ (x,0), i.e, by the wave function at the far side dit
boundaries (z = 0), which depends on the attractive
potential. Huygens principle [14] yields

Fo) =2 [ geyoe s (3

\/X slits
If the dit and the bar widths are much larger than the de
Broglie wavelength A, the intensity 1(9) = | £(9)|?> can
be written as a product

sin(ANkd sind) \* )

I('&) ( Sln(%delnl?) ) |fsht(19)| P (4)
where N denotes the number of dlitsand | f,;;|? is the dlit
function. Thus, the atomic diffraction pattern consists of
principal maxima at the diffraction angles sind, = nA\/d,
n=0,*1,*2,... while | fgi(9)|> plays the role of an
envelope function. Equation (3) gives, after a change of
variable from x to a variable with the origin at the edge of
adit, / = 59/2 — x,

cosd 7 s[ <s
= d¢ cos k
X ) #

fslit(ﬁ) =

N &
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FIG. 1. Diffraction patterns measured with grating | for He, Ne, Ar, and Kr at the same beam energy (7, = 300 K). The insets

contain a comparison between least-squares fits of 1,/1; determined from Eqg. (11) with continuous values of n (solid lines) and
Kirchhoff theory (dashed lines) to measured diffraction intensity ratios (points).
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where 7(0) = ¢(s9/2 — £,0), 0=/ = s50/2, is the
single-dlit transmission function.

It is instructive to first deduce the general structural
form of f; (). Sincethe grating bars reflect those atoms
which touch the bar walls, the wave function in the dlit
vanishes at the walls, i.e., 7(0) = 0. Taking this into
account and after a partial integration Eq. (5) becomes

_cos? (so KT D(—k) — e T D(k)
fsie(9) = Na T<2> » ,
(6)
where
o) = i *ikd '({)
) = [T ace T ™

with ®(0) = 1. Thelogarithm of ® can be expanded as

(Fik)"

logd(xk) = Z TRn, )

n=1

where the complex R,, are known as cumulants [15],

2o TQ) s [— 7({)
R = d = — d o 9
A Rl AT T
etc. For the small wave-vector transfer « of interest here,
only the first two terms are needed in the series Eq. (8).
The single-dlit amplitude Eg. (6) then becomes
oy _ - COSO s_0> _2g Sn[k(3 — Ry)]
fsht(ﬁ) =2 \/X T< ) e 2 K
For a comparison with experiment the surface rough-
ness of the grating bars must be accounted for. In afirst
approximation roughness has been included by rigid shifts
of the individual bar sides (see also Ref. [16]), which are
randomly Gaussian distributed. In the case of aweak sur-
face potential, this results in an additional Debye-Waller-
like damping factor exp(—k2og sin®d,) in the intensity
ratio of the principal maxima, I,, /I, where o is the vari-
ance of the geometrical dlit width [13]. Taking this into
account, Eq. (4) with Eg. (10) yields
,(M)z
1, e 4 . 2<7Tnseff> . 2<7Tn6>}
- = —_— - +
I (77n«/s§ff+52)2 |:Sn d sinh d ’
d (11)

. (10)

where o? = 0'3 + Re(R,), seif = so — 2Re(R;) and
6 = 2Im(Ry). The first term in the brackets of Eq. (11)
leads to a Kirchhoff-like dlit function (see, e.g., Ref. [13])
with a Debye-Waller term and an effective reduced dlit
width s.er, while the second term suppresses the zeros
of the Kirchhoff pattern, as can be seen in the insets of
Fig. 1.

The effective variance o2 as well as s and &
in Eq. (11) can be caculated for the potentia Eqg. (1).
The standard eikonal approximation [9,17] is used to
determine the grating transmission function, given by
#(x,0) = 9™ in the dlits and zero elsewhere. The

phase shift reads

ox) = —% fdz Vix,z), (12

where v = fik/m is the particle velocity. Taking the
trapezoidal bar profile into account, after some algebrathe
single-dlit transmission function becomes

() = exp[i roosp Cy 1+ o 1P } (13)

hv 3 (1 + 7 tanB)?

An analysis of Egs. (13) and (9) reveals that Re(R,), and
hence s.¢f, is especially sensitive to the potential.

The effective dit width s.¢, as well as 6 and o, was
determined from the experiment by fitting the relative
experimental diffraction intensities 1,/I; as depicted in
the insets of Fig. 1 to the corresponding ratios determined
from Eq. (11). These ratios and not 1,,/1, are compared
with theory since small concentrations of clusters in
the beams can falsify the I, intensities. The effective
dit widths are plotted versus the particle velocity in
Fig. 2 (points) for two different gratings. The difference
between the effective dit widths for T, = 300 K beams
and the geometrical dit width sy increases from 1 nm
(He) to more than 6 nm for Kr as expected from the
increasing interaction strength of the van der Waals
potential. With increasing C; the slope of the curves also
increases. The solid linesin Fig. 2 represent |east-squares
fits of the theoretical expression s.;f = so — 2Re(Ry),
with R; given by Egs. (9) and (13), to the experimentally
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FIG. 2. Effective dit widths plotted as a function of the
particle velocity for He, Ne, D,, Ar, and Kr beams. The solid
lines are theoretical curves determined from Egs. (9) and (13)
with the C; parameters in Fig. 3. Data points indicate fits of
I,/1; determined from Eq. (11) to experimental intensity ratios
obtained from diffraction measurements with two gratings.
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FIG. 3. Measured C; vaues of silicon nitride (SIN,) obtained
in this work plotted as a function of the static electric dipole
polarizability of the respective atom, a (see Ref. 8). The solid
lineis alinear fit of the data.

determined effective dlit widths, which alow for the
determination of C; and so. Since He has the smallest
polarizability and measurements over the largest range of
velocities were possible they were used to determine the
values of s¢ in Table | for each of the gratings. Identical
values for so were obtained from D, measurements. This
value of so was then used for Ne, Ar, and Kr, with C3 the
only remaining fit parameter, and hence for these systems
measurements at various velocities are not necessary.

The C; parameters are plotted versus the static electric
dipole polarizabilities « in Fig. 3. The error bars were
determined by assuming a redlistic uncertainty in the
bar geometry by varying 8 by *=2° in Eq. (13). This
uncertainty seems to be the only systematic source of
error in the present C3 determination and leads to errors
of about 20%. Figure 2 indicates that the influence of the
surface potential is restricted to distances much smaller
than the dlit width and therefore, by Ref. [18], corrections
due to the finite bar width should be negligible.

Within the error bars the data from both gratings fall
on a straight line in agreement with Hoinkes' empirical
rule [8]. Accordingly the slope provides information on
the optical dielectric constant of the grating material. An
approximation to the theoretical expression for C; [19]
predicts that D, should in fact have a dightly smaller ratio
of C3/a than the rare gas atoms, while among them Neiis
expected to have the largest ratio. It is satisfying to see
that the small deviations from the straight line in Fig. 3
agree with this expected trend.
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The big advantage of the present method is its large
sensitivity as can be seen from Fig. 2 and its universality.
In principle all atoms and molecules are accessible for
study. The only restrictions will be to produce gratings of
different solids and molecular beams with sufficiently nar-
row velocity distributions and to reduce the corresponding
background in the mass spectrometer detector to assure an
adequate signal-to-noise ratio. The present work also al-
lows for a quantitative understanding of diffraction inten-
sities in atom optics and atom interferometry experiments
using transmission structures as optical €lements.

We are greatly indebted to Tim Savas and Henry
I. Smith of MIT for providing the transmission gratings
to us. Further, we thank Dick Manson and G. Schmahl
for fruitful discussions.
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