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Recombination of Three Atoms in the Ultracold Limit
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We identify two qualitatively different mechanisms that control three-body recombination in a spin-
polarized gas near zero temperature. A universal curve describes the recombination rate versus the
two-body scattering length a. It grows as a4 for large jaj, with different mechanisms for a , 0 and
a . 0. Our calculations document a previously established mechanism that causes K3 to grow rapidly
as the two-body scattering length a increases toward 1`, and a new tunneling mechanism that produces
an even stronger enhancement of K3 as a ! 2`. The expectations based on these two mechanisms
can be modified by quantum mechanical interference or resonance effects.

PACS numbers: 34.10.+x
Three-body recombination processes such as Rb 1

Rb 1 Rb ! Rb2 1 Rb limit the density and lifetime of
current generation Bose-Einstein condensates (BECs).
Such processes are also important in nuclear physics
and in chemical dynamics. Yet the current state of
recombination theory remains primitive, compared to the
highly successful scattering theory for two bodies. In
perturbative regimes, the theory developed by Verhaar
and coworkers [1–3] has been applied to collisions of
three hydrogen atoms. The validity of such treatments
for the alkalis, which interact far more strongly, is highly
questionable.

Meanwhile, experimentalists recently created a Bose-
Einstein condensate with tunable properties [4–6]. When
a magnetic field B is applied near a diatomic Feshbach
resonance, a condensate is created with a custom two-
body scattering length a�B�. So far, however, the promise
of a tunable BEC has been negated by a huge rise in
the three-body recombination [7] that rapidly devours the
condensate.

Fedichev et al. [8] predicted in 1996 that the low-
energy recombination rate exhibits explosive growth with
increasing scattering length a, namely KFRS

3 � 23 h̄
m a4.

Yet their derivation is valid only if a . 0 is large. An-
other theoretical study [9] suggested that the recombina-
tion rate should be even larger when 2a is equally large,
because a negative scattering length lowers a barrier in the
three-body entrance channel. This same effect ultimately
destabilizes a many-atom BEC when a , 0 [10,11].

In this article we develop a comprehensive description
of three-body recombination and show its key implica-
tions. First of all, we present a quantitative method that
can be used to calculate numerically stable recombination
rates when the two-body interactions are short range in
character. Then, based upon many calculations, we iden-
tify two qualitatively different mechanisms for recombina-
tion. Both mechanisms, remarkably, cause K3 to grow as
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a4 for large jaj, but with a much larger coefficient when
a , 0. This simple a4 scaling can be modified, however,
by a resonance or interference effect. We find in particu-
lar that three-body recombination losses should not gener-
ally prevent the formation of a tunable BEC.

Our formulation uses the framework of Delves [12],
who showed that a countable set of three-body colli-
sion channels can still be defined at energies above the
threshold for breakup (E � 0) using hyperspherical coor-
dinates. In this representation, S is manifestly symmetric
and unitary. The permutation symmetry is enforced using
“democratic hyperspherical coordinates” (c.f. Ref. [13]).
Further, we need only the L � 0 block of the scattering
matrix since the generalization of Wigner’s threshold law
leads to K3 ~ EL near threshold.

The derivation of our recombination rate expression in
terms of the scattering matrix is too lengthy to convey
here. In the ultracold limit, we obtain

srecomb
identical �

1152p2

k5 jSA21A√A1A1Aj
2. (1)

Here k � �2mE�h̄2�1�2 is the hyperradial wave number
in the incident three-body continuum channel, and m �
m�

p
3 is the three-body reduced mass. This generalized

cross section has units of �length�5, as is appropriate to
characterize radial scattered flux in 6 dimensions. We
adopt the convention of Mott and Massey [14] in defining
the cross section for identical particle collisions as the
ratio of the scattered radial flux to the incident flux in
one of the six symmetrizing permutations of the incident
plane wave. Equation (1) leads to an energy-independent
constant value for K3 in the limit of infinitesimal incident
energy. Our results confirm the approximate a4 power
law dependence predicted for large a . 0 in Ref. [8],
although we find a larger coefficient. Our results are not
consistent with the a2 dependence predicted in Ref. [2].

The event rate constant is simply K3 �
h̄k
m s

recomb
identical for

recombination in a thermal gas of spin-polarized bosons.
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For atoms in a BEC, this rate is reduced by a factor
of 3!, a result predicted by theory [15] and observed
experimentally [16]. For a mixture of condensed and
noncondensed atoms, the factors have been discussed in
Ref. [17]. Often the rate constant is quoted as an atom-loss
rate constant, the coefficient of the density cubed in the rate
equation. This quantity is L3 � 3K3�6, where the factor
of 3 in front of K3 arises because both the diatom and the
final state atom are typically ejected from a trap following
each recombination event. The division by 6 reflects
the fact that there are N3�6 atom triples in a fixed volume.

We solve coupled equations in an adiabatic hyperspheri-
cal representation [18] using the variational R-matrix
method [19]. The short range two-body potentials permit
us to extract the asymptotic S-matrix simply, without
transforming to Jacobi coordinates at large hyperradius
R as is usually done in reactive scattering calculations.
It is necessary to integrate the coupled equations out to
surprisingly large radii, R . 104 a.u., in order to extract
a stable scattering matrix at these ultracold energies.

The interaction used is a sum of triplet two-body
potentials, i.e., y�r12� 1 y�r23� 1 y�r31�. This choice is
appropriate for fully spin-polarized atoms that collide in
a quartet electronic spin state. By symmetry, precisely
one hyperspherical potential curve of the trimer must
converge asymptotically to each dimer bound state. An
infinite set of potential curves associated with three-
body entrance and exit channels must approach the
three-body dissociation threshold �U � 0� asymptotically,
but a generalized Wigner threshold law guarantees that
scattering is dominated by the lowest three-body entrance
channel at threshold.

In order to rapidly survey the dominant mechanisms,
we have used model two-body potentials. One set of
calculations scales the physical Rb-Rb triplet potential by
an overall constant factor g, 0 # g # 1, mimicking the
experimental ability to tune the scattering length. This
rescaling economizes the calculations substantially, since
the total number of bound diatomic channels is reduced to
a manageable number. We have also performed extensive
calculations using y�r12� � D sech2�r12�r0�, as in [9]. If
the recombination rate is controlled only by the two-body
scattering length a [8,9], this simplification should not
matter. We further test this premise by treating two-
body potentials that support different numbers of bound
two-body channels but which generate the same scattering
length.

Figure 1(a) shows the hyperspherical potential curves
for the sech 2 potential scaled to give a two-body scat-
tering length a � 100 a.u. approximately equal to the
known 87Rb triplet scattering length, but with only a
single s-wave bound state. The potential curves are very
simple for this case, and their main features are consistent
with Refs. [9,18]. A distant avoided crossing between
the three-body entrance channel and the highest s-wave
recombination channel occurs generally near R � 3a.
The a , 0 case in Fig. 1(b) shows no such long-range
1752
FIG. 1. The lowest two adiabatic hyperspherical potential
curves (solid line) along with their nonadiabatic coupling
strength (dashed line) for (a) a . 0 and (b) a , 0. The
nonadiabatic coupling strength is a dimensionless quantity
defined as the ratio of the squared coupling matrix element
P2

12�R� to the product of the difference in the adiabatic potential
curves DU�R� and the reduced mass m. The inset in (b) shows
the potential barrier in the three-body entrance channel.

avoided crossing, but a potential barrier in the three-body
entrance channel at R � 22a has key implications dis-
cussed below.

Figure 2 shows our nonperturbative recombination
calculations for over 80 different two-body potentials,
including a wide range of scattering lengths and different
numbers of two-body bound states. Figure 2 shows rates
obtained using both the sech2 two-body potential with
r0 � 18.8 a.u. and the rescaled Rb potential. This plot
is presented in a new way that we find revealing [20], as
a “recombination length” defined by

�3 �

µ
m

h̄
K3

∂1�4

.

This definition is intended to present a quantity largely
independent of the atomic properties other than the scat-
tering length, and to reduce to a number roughly compa-
rable to the scattering length in magnitude. Here m �p

m1m2m3��m1 1 m2 1 m3� is the three-body reduced
mass, which reduces to m�

p
3 for three identical atoms.

Remarkably, the calculated rate constants in Fig. 2
cluster along a single universal curve, suggesting that
the value of K3 is controlled primarily by a. Figure 2
also shows two additional features that have apparently
not been discussed in the literature previously, namely a
shape resonance effect arising at a � 2175 a.u. and an
interference minimum at a � 290 a.u. The following two
simple mechanisms explain these results qualitatively.

(i) Recombination at a . 0.—The primary re-
combination mechanism when a is large and positive
involves a rather broad avoided crossing near R � 3a
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FIG. 2. Numerically calculated recombination lengths �3 for
ultracold 4He and spin-stretched 87Rb are compared with
Eq. (3) as a function of the scattering length a. The circles
are for two-body sech2 potentials with r0 � 18.8, for one
s-wave bound state (filled), and multiple s-wave states (open).
Triangles show results obtained using a rescaled Rb potential,
filled (one s-wave bound state) and open (multiple states). The
1 symbol is our result for helium, using a realistic potential.
The solid curve is Eq. (3) with the sin2F Stückelberg factor,
while the dashed curve uses its average value �1�2�. The inset
shows four experimental measurements, for Rb j1, 21� (filled
square), Rb j2, 2� (open square), Na j1, 21� (open diamond,
B � 0), and Na j1, 1� (filled diamond, B � 894.5 G), from
Refs. [16,17,7,7], respectively. Calculations were performed
at 1 mK, except for a # 2300 a.u. which were calculated at
0.1 mK to reach the ultracold limit. For He, Na, K, and Rb,
Eq. (3) agrees with our full calculations if the parameter r0 is
chosen to equal 9.4, 12.4, 16.9, and 18.8 a.u., respectively.

between the highest s-wave two-body channel and the
lowest three-body channel [see Fig. 1(a)]. This mecha-
nism is consistent with the qualitative scenario postulated
in [8,9]. Whenever inelastic scattering occurs through
such a Landau-Zener-type avoided crossing, the possi-
bility arises for constructive or destructive interference
between two competing pathways that contribute coher-
ently—so-called “Stückelberg oscillations” [14,21].

At threshold, the scattering probability for the rate-
limiting transition into the highest s-wave recombination
channel behaves approximately as

jSA21A√A1A1Aj
2 ! 0.067�ka�4 sin2F ,

a ! 1` ,
(2)

where F is the phase difference between the two path-
ways. A crude evaluation of F can be made by approxi-
mating the highest s-wave potential curve by the potential
relevant in the Efimov limit of very large, positive a (see,
e.g., [9]). This approximation yields F � ln�3a�2r0� for
the sech2 potential where r0 is a constant in the vicin-
ity of 1–20 a.u. [The sin2 factor of Eq. (2) can likely be
approximated by 1�2 in systems having numerous two-
body bound states, because the returning wave is likely to
be dissipated into other two-body channels by the many
avoided crossings. This point requires additional study.]

(ii) Recombination at a , 0.—The rate-limiting step
in this case is not a long-range avoided crossing as
was found for a . 0. Rather, it is quantum mechanical
tunneling under the barrier identified previously in [9],
which in our present notation occurs at Rbarrier � 22.0a,
with a barrier maximum of U�Rbarrier � � 0.079�ma2, in
a.u. [see Fig. 1(b)]. In physical terms, the incident three-
body wave front near zero energy must tunnel inside
this barrier in order to reach the avoided crossings with
recombination channels which lie at much smaller radii.

Since the rate limiting step for a , 0 is a tunneling
process, this suggests that a shape resonance in the three-
body entrance channel potential can dramatically enhance
the recombination rate at certain values of a. The con-
dition for a zero energy resonance is simply the Bohr-
Sommerfeld quantization condition for a quasibound state
in the inner well of the three-body entrance curve. In the
limit of very large negative values of a, this WKB integral
is approximately the phase F calculated above for a . 0.
The logarithmic dependence of the phase on jaj implies
that the zero-energy rate should be enhanced at an infinite
number of Efimov-like shape resonances as a approaches
2`. Experiments carried out at fixed, nonzero energy E,
however, can only observe a finite number, because the
barrier height decreases as 1�ma2 as a ! 2`, and it even-
tually falls below E.

The calculated rates using y�rij� � D sech2�rij�r0�, for
different values of r0 can all be represented compactly
by a single formula. While Eq. (2) gives a reasonable
approximation, better agreement with our numerical rates
is obtained using the following expression for the zero
temperature recombination length (in a.u.):

� th
3 �a� � max

8><
>:

5.0�a 2
3
2 r0� �2 sin2�ln 3a

2r0
��1�4, a . 0,

27.7a, a , 0,
4r0.

(3)
The slopes in this expression are accurate to about 65%.
Figure 2 confirms that this formula with r0 � 18.8 a.u.
agrees with our full numerical calculations for the rescaled
87Rb potential with a single s-wave bound state. For other
alkalis, see the values cited in the caption to Fig. 2, but
note that the phase of the sin2 function may require ad-
justment. For helium, Eq. (3) with r0 � 9.4 a.u. gives
quantitative agreement with our numerical values; in par-
ticular, it places the interference minimum correctly at
a � 145 a.u. Equation (3) has a lower limit of � th

3 � 4r0

because � th
3 * 50 100 a.u. in all of our numerical cal-

culations. This effect is presumably due to other chan-
nels that become more important when the dominant
channels weaken sufficiently. Any Stückelberg minimum
can be vanishingly small, however, if just one recombina-
tion channel is present.

Table I compares our estimates based on Eq. (3) with
experimental results presently available for spin-polarized
collisions in various atoms, and with other theories. (For
these estimates the Stückelberg sin2 factor was replaced
by its average value 1�2.) The value shown for helium in
Table I is from our full numerical calculation, however,
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TABLE I. Recombination event rate constants for helium and for the alkalis.

Present Experiment Other
Atom a (a.u.) K th

3 �cm6�s� K
exp
3 �cm6�s� K th

3 �cm6�s�
4He 172 4.2 3 10227 · · · 2.5 3 10227 a

7Li 227.6 2.5 3 10228 ,6 3 10227 b 5.2 3 10228 c

23Na�1, 21� 54.6 3.9 3 10229 1.3 3 10229 d 4.4 3 10230 a

23Na�1, 1� 69.5 1.6 3 10228 1.8 3 10228 d 4.0 3 10228, c 1.2 3 10229 a

39K 233 9.2 3 10229 · · · · · ·
85Rb 2370 6.7 3 10225 · · · · · ·

87Rb�1, 21� 106 2.3 3 10228 9 3 10229 e 8 3 10230 c

87Rb�2, 2� 106 2.3 3 10228 2.2 3 10228 f 1.7 3 10229 a

133Cs�3, 3� 21250 5.6 3 10223 ,10223 g 1 3 10228 h

a[8] b[22] c[2] d[7] e[16] f[17] g[23] h[3]
rather than from Eq. (3), since we can perform the calcula-
tion without rescaling the potential. Table I shows event
rates per collision, K3, rather than total atom loss rates
L3; experimental results reported as L3 appropriately con-
verted. Where recombination rates have been reported for
atoms in a BEC [7,17], we have multiplied the measured
rates by 6 to compare with our theoretical rates for ultra-
cold noncondensed atoms.

The lone experiment that deviates from our predicted
dependence of �3 on a (except at a $ 50) is the mag-
netic field Feshbach resonance studied for Na. This might
suggest that the mechanisms at work are different from
those addressed here. If the recombination rates measured
in [7] are plotted in the form �3�a�, they grow as a de-
creases from 50 a.u. toward 0 which we have never ob-
served in our calculations. This behavior, if it is confirmed
as a three-body process, probably signals the presence of a
three-body Feshbach or shape resonance of an entirely dif-
ferent type than we have observed for stretched spin states.
The theoretical rate for Cs in Table I is constant only be-
low 0.1 mK, whereas the experimental bound from [23]
was measured at 10 mK, where we estimate a rate lower
by about 100.

In summary, we have developed a method to calculate
quantitative three-body recombination rates for a spin-
polarized atomic gas. A survey of over 120 different
two-body potentials allowed us to identify the physical
mechanisms relevant for different signs of a. Our results
suggest a universal behavior as a function of a, namely
a simple a4 scaling, modified in some cases by quantum
mechanical interference or shape resonance effects. In
fact, the Na j1, 61� and Rb j1, 21� experiments cited in
Table I do not involve the stretched spin states for the
atoms involved but still agree with our calculations. While
we suspect that many of our results are still applicable
in this case, there are almost certain to be far more
exceptions, owing to the more prevalent occurrence of
three-body Feshbach and shape resonances. The resulting
dynamical issues that arise in this more complicated regime
of collisions will require much further study in the future.
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