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Bogomol’nyi Equation for Intersecting Domain Walls
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We argue that the Wess-Zumino model with quartic superpotential admits stable static solutions in
which three domain walls intersect at a junction. We derive an energy bound for such junctions and
show that configurations saturating it preserve 1

4 supersymmetry.
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Domain walls arise in many areas of physics. They
occur as solutions of scalar field theories whenever the
potential is such that it has isolated degenerate minima.
There are two circumstances in which this happens natu-
rally. One is when a discrete symmetry is spontaneously
broken; in this case the degeneracy is due to the symme-
try. The other is when the field theory is supersymmetric;
in this case the potential is derived from a superpotential,
the critical points of which are degenerate minima of the
potential. A simple model illustrating the latter case is
the �3 1 1�-dimensional (or D � 4) Wess-Zumino (WZ)
model with a superpotential W�f� that is a polynomial
function of the complex scalar field f. The static domain
wall solutions of this theory [1,2] are stable for topologi-
cal reasons but the stability can also be deduced from the
fact that a static domain wall is “supersymmetric”; i.e.,
it partially preserves the supersymmetry of the vacuum.
An advantage of the latter point of view is that the condi-
tion for supersymmetry leads immediately to a first order
“Bogomol’nyi” equation, the solutions of which automati-
cally solve the second order field equations.

The possibilities for partial preservation of supersymme-
try in the WZ model can be analyzed directly in terms of
the N � 1, D � 4 supertranslation algebra. Allowing for
all algebraically independent central charges, the matrix of
anticommutators of the spinor charge components S is

�S, S� � H 1 G0iPi 1
1
2G0ijUij 1

1
2G0ijg5Vij , (1)

where H is the Hamiltonian, Pi the 3-momentum, U and
V are two 2-form charges, �G0, Gi� are the 4 3 4 Dirac
matrices, and g5 � G0123. The fraction of supersymme-
try preserved by any configuration carrying these charges
is one-quarter of the number of zero-eigenvalue eigen-
spinors z of the matrix �S, S�. Supersymmetric configura-
tions other than the vacuum will preserve either 1

2 or 1
4 of

the supersymmetry. A domain wall in the 1-3 plane, for
example, has �U13, V13� � H�cosa, sina� for some angle
a [1,3]; the corresponding spinors z are eigenspinors of
G013 exp�ag5� from which it follows that the domain wall
preserves 1

2 supersymmetry. Now consider a configura-
tion with nonzero H, U13 � u, V23 � y, all other charges
vanishing; such a configuration preserves 1

4 supersymme-
try if juj 1 jyj � H, with z an eigenspinor of both G013

and G023g5. Such a configuration would naturally be as-
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sociated with domain walls in the 1-3 and 2-3 planes in-
tersecting on the 3-axis. In this paper we argue that this
possibility is realized in the WZ model.

Intersections of domain walls have been extensively
studied in the context of a theory with a single real scalar
field w on �3 [4–6]. Static configurations are presumed
to satisfy an equation of the form

=2w � V 0�w� , (2)

where =2 is the Laplacian on �3 and V �w� is a real
positive function of w with two adjacent isolated minima
at which V vanishes. Let these minima be at w � 61
and let �x, y, w� be Cartesian coordinates for �3. If one
assumes that w ! 61 as x ! 6`, uniformly in y and
w, then solutions of (2) are necessarily planar because
all [7–11] such solutions satisfy the first order ordinary
differential equation

dw

dx
�

p
V . (3)

The solutions of this equation are the static domain
walls which are stable for topological reasons. In the
context of a D � 3 supersymmetric model they are also
supersymmetric, for reasons explained at the conclusion
of this Letter.

Now consider the possibility of static intersecting
domain wall solutions of (2). An existence proof has been
given [4] showing that (2) admits a solution representing
two orthogonal domain walls. The solution has Dirichlet-
type boundary data: w � 0 on the planes x � 0 and
y � 0 and w ! 61 as jxj ! ` within the first quadrant.
Given that the solution exists in the first quadrant, it may
be obtained in the remaining quadrants by reflection. It
seems clear, although we are unaware of formal proofs,
that there should also exist solutions for which 2n domain
walls intersect, adjacent walls making an angle p�n.
However, all of these intersecting solutions are expected
to be unstable; it is certainly the case that they cannot be
supersymmetric. We shall return to this point later.

Domain walls with two or more scalar fields have been
investigated in [5,6,12]. In [5,6], three-phase boundaries
were shown to minimize the energy and to correspond,
in the thin-wall limit, to a “Y intersection” (with 120±

angles). The WZ model is a special case of models of
this type. The energetics of domain wall intersections in
© 1999 The American Physical Society 1727
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the WZ model was investigated in [1] (see also [13]). The
possibilities depend on the form of the superpotential W . If
it is cubic then there are two possible domains and only one
type of domain wall separating them. Intersections of two
such walls cannot be more than marginally stable. Stable
intersections can occur only if the superpotential is at least
quartic. A quartic superpotential can therefore model a
tristable medium with three possible stable domains and
three types of domain wall. The (1 1 1)-dimensional
analysis of [1] indicates that triple intersections of the
three walls should be stable for some range of parameters,
but static solutions representing such intersections are
intrinsically �2 1 1� dimensional (given that we ignore
dependence on the coordinate of the string intersection),
so they cannot be found from the truncation to 1 1 1
dimensions. However, they should be minimum energy
solutions of the reduction of the WZ model to 2 1 1
dimensions. The energy density of static configurations
in this reduced �2 1 1�-dimensional theory is

H �
1
4=f ? =f 1 jW 0�f�j2, (4)

where = � �≠x , ≠y� with �x, y� being Cartesian coordinates
for the two-dimensional space.

Let z � x 1 iy. The above expression for the energy
density can then be rewritten as

H �

Ç
≠f

≠z
2 eiaW 0

Ç2
12 Re

µ
e2ia ≠W

≠z

∂
1

1
2J�z, z� ,

(5)

where a is an arbitrary phase, and

J�z, z� �

µ
≠f

≠z
≠f

≠z
2

≠f

≠z
≠f

≠z

∂
. (6)

We now observe that

Q � 1
2

Z
dx dy J�z, z� �

Z
V , (7)

where V is the 2-form on 2-space induced by the closed
2-form �i�4� df ^ df on the target space (assumed here
to be the complex plane). Since V is real and closed,
Q is a real topological charge. We may assume without
loss of generality that is it non-negative. Integration over
space then yields the following expression for the energy:

E �
Z

dx dy

Ç
≠f

≠z
2 eiaW 0

Ç2
1Re�e2iaT � 1 Q ,

(8)

where T is the complex boundary term

T � 2
Z

dx dy
≠W
≠z

. (9)

We thereby deduce the Bogomol’nyi-type bound

E $ Q 1 jT j , (10)

which is saturated by solutions of the Bogomol’nyi
1728
equation
≠f

≠z
� eiaW

0. (11)

Before considering what solutions this equation may
have, we shall first show that generic solutions preserve
1
4 supersymmetry. The fields of the WZ model reduced
to 2 1 1 dimensions comprise a complex scalar f and
a complex SL�2; �� spinor field ca; we use an SL�2; ��
notation in which

≠ab � dab≠t 1 �s1�ab≠x 1 �s3�ab≠y (12)

and ca � cb´ba . Similarly, ≠ab � ´ag´bd≠gd. The
Lagrangian density is

L �
1
8≠abf≠abf 1

i
2

c
a

≠abcb

1
i
2

�W 00caca 1 W 00
c

a
ca� 2 jW 0j2. (13)

Note that the corresponding bosonic Hamiltonian den-
sity is precisely (4). The action is invariant, up to
a surface term, under the infinitesimal supersymmetry
transformations

df � 2ieaca ,

dca � 2≠abfeb 2 2W 0
´abeb ,

(14)

and their complex conjugates (we adopt the convention
that bilinears of real spinors are pure imaginary).

We see from (14) that purely bosonic configurations are
supersymmetric provided that the equation

≠abfeb 1 2W 0
´abeb � 0 (15)

admits a solution for some constant complex spinor e.
For a time-independent complex field f this equation is
equivalent to

�1 2 s2�e�≠f� 1 �1 1 s2�e�≠f� � 2W 0
s3e , (16)

where ≠ � ≠�≠z and ≠ � ≠�≠z. For a field f satisfying
(11) we deduce that e satisfies

s2e � e, s3e � e2iae . (17)

These constraints preserve just one of the four supersym-
metries. Solutions of (11) are therefore 1

4 supersymmetric.
The supersymmetry Noether charge of the above model

is the complex SL�2; �� spinor

S � 1
2

Z
dx dy�� �f 2 s1≠xf 2 s3≠yf�c

2 2is2W 0c� . (18)

We can now use the canonical anticommutation rela-
tions of the fermion fields to compute the anticommuta-
tors. After restricting to static bosonic fields one finds
that �S, S� � H 2 s2Q. Thus the junction charge Q ap-
pears as a central charge in the supertranslation algebra.
The charge T appears in the �S, S� anticommutator and
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the positivity of the complete matrix of supercharges im-
plies the bound (10). Of interest here is how the junction
charge Q appears in the D � 4 supersymmetry algebra
from which we started. It appears in the same way as
would the P3 component of the momentum and is asso-
ciated with the constraint G03z � 2z . This constraint is
equivalent to G023g5z � z on the 11 eigenspace of G013

so, indirectly, we have found a field theory realization
of the 1

4 supersymmetric charge configurations that we
earlier deduced from the N � 1, D � 4 supersymmetry
algebra alone.

We now return to the Bogomol’nyi equation (11). If
f is restricted to be a function only of x then this
equation reduces to the one studied in [1], which admits
domain wall solutions parallel to the y axis. Each domain
wall is associated with a complex topological charge of
magnitude j

R
dx ≠xW j and phase a. The question of

stability of domain wall junctions was addressed in [1] by
asking whether two domain walls parallel to the y axis,
at least locally, can fuse to form a third domain wall of
lower energy. It was found that this is possible only if
their phases differ; otherwise, stability is marginal. Given
that the energetics allows the formation of an intersection,
we would like to find the static intersecting domain wall
solution to which the system relaxes. Such solutions must
depend on both x and y (equivalently, on both z and z),
and hence are much harder to find.

To simplify our task, we consider the simple quartic
superpotential,

W�f� � 2
1
4f4 1 f . (19)

This has three critical points, at f � 1, v, v2, and a �3
symmetry permuting them. There are therefore three pos-
sible domains and three types of domain wall separating
them. The Bogomol’nyi equation corresponding to this
superpotential is

≠f

≠z
� 1 2 f

3
. (20)

We have set the phase a � 1 since it can now be removed
by a redefinition of z. This equation is invariant under
the �3 action: �z, f� ! �vz, vf�, so we are led to seek
a �3 invariant solution such that f ! 1 as one goes
to infinity inside the sector 2

p

6 , argz ,
p

6 , subject to
the condition that argf ! argz on the boundary. By
symmetry f must vanish at the origin and so f 	 z
for small z. Given that a stable static triple intersection
exists, there should also exist metastable networks of
domain walls [14]. For example, one may imagine a
static lattice consisting of hexagonal domains, rather like
graphite. The vertices form triple intersections and one
may consistently label the hexagons of the array with
1, v, v2, in such a way that no two domains which touch
along a common edge carry the same label. The evolution
of networks of domain walls has been studied numerically
in [15]. We believe that it would be fruitful to study the
WZ model in this context.
It is well known that topological defects such as strings
and domain walls admit wavelike excitations traveling
along them at the speed of light. The domain wall
junctions considered here are no exception. One easily
checks that the D � 4 WZ equations are satisfied if f�z�
solves our Bogomol’nyi equation (11) but is also allowed
to have arbitrary dependence upon either t 2 w or t 1 w,
where w is the third space coordinate on which we reduced
to get the �2 1 1�-dimensional model. However, only one
choice preserves supersymmetry. To see this we note
that the SL�2; ��-invariant condition for preservation of
supersymmetry in the unreduced D � 4 WZ model is

≠a �bfe �b 1 2W 0
´abeb � 0 . (21)

Given that the reduced D � 3 equation (15) is satisfied,
and that the spinor e satisfies (17), we then deduce that

≠1fe � 0 , (22)

where ≠1 � ≠t 6 ≠w , the sign depending on the choice
of conventions. Thus, we again have 1

4 supersymmetry if
≠1f � 0 but no supersymmetry if ≠2f � 0. This result
is not unexpected because we saw earlier that the junction
charge Q appears in the D � 4 supersymmetry algebra in
the same way as does P3.

Note that since an individual domain wall preserves
1
2 supersymmetry its low energy dynamics must be de-
scribed by a �2 1 1�-dimensional supersymmetric field
theory with two supersymmetries (corresponding to N �
1). The two components of the spinor field of this effective
theory are the coefficients of two Nambu-Goldstone fermi-
ons associated with the broken supersymmetries. The do-
main wall junction preserves only 1

4 supersymmetry, so
there must be a total of three Nambu-Goldstone fermions
localized on the intersecting domain wall configuration as
a whole. Only two of these are free to propagate within
the walls, so the third Nambu-Goldstone fermion must be
localized on the string junction. This can also be seen by
viewing the junction as a 1

2 -supersymmetric defect on a
given wall. The fact that half of the wall’s supersymmetry
is preserved means that the junction’s low energy dy-
namics is described by a �1, 0�-supersymmetric �1 1 1�-
dimensional field theory. This theory is chiral with one
fermion that is either left moving or right moving; let us
declare it to be left moving. This fermion is the Nambu-
Goldstone fermion associated with the fact that the junc-
tion also breaks half the wall’s supersymmetry. Its bosonic
partner under �1, 0� supersymmetry must also be left mov-
ing. It follows that right-moving waves are supersym-
metric whereas left-moving ones are not, precisely as we
deduced above from other considerations.

Now that we have a good understanding of the pattern of
supersymmetry breaking in the WZ model, we return to the
simpler model discussed earlier with one real scalar field.
This model has an N � 1 supersymmetrization in 2 1 1
dimensions, with V � 4�W 0�2, obtained by restricting all
quantities in the N � 2 model discussed above to be
1729
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real. Taking ≠yw � 0 we then find that solutions of (3)
are supersymmetric, with the real 2-component spinor e

an eigenspinor of s3. This might seem paradoxical in
view of the fact that the N � 1, D � 3 supertranslation
algebra admits no central charges, of either scalar or
vector type, that are algebraically independent of the
3-momentum. The resolution is that the anticommutator
of supersymmetry charges Sa is

�Sa , Sb� � dabH 1 �s1�ab�Px 1 Ty�

1 �s3�ab�Py 2 Tx� , (23)

where H is the Hamiltonian, P is the field 2-momentum,
and T �

R
d2x =W is a 2-vector topological charge (the

corresponding algebra of currents was discussed in [16]).
For static solutions P vanishes, while ≠yW vanishes for
solutions with ≠yw � 0. For such solutions we have

�S, S� � H 1 s3Tx . (24)

It follows that H $ jTxj. Field configurations that saturate
this bound preserve 1

2 the supersymmetry and are associ-
ated with eigenspinors of s3, as claimed. An intersecting
domain wall solution in this N � 1, �2 1 1�-dimensional
model cannot satisfy (3) (because its only static solutions
are the planar domain walls) and this means that it cannot
be supersymmetric. In contrast to the model with a com-
plex scalar, one cannot use supersymmetry to argue for the
stability of domain wall junctions in a model with only one
real scalar field.
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